557
views
0
recommends
+1 Recommend
2 collections
    20
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Endovascular Stroke Management: Key Elements of Success

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: In the last 12 months, treatment of acute ischaemic stroke secondary to large vessel occlusion has undergone a paradigm shift. The success of endovascular surgery, and in particular, the use of stent-retrievers, is remarkable. Summary: Beyond percentages and p values, the endovascular trials demonstrated, in their similarities and their differences, the critical elements of successful intervention in acute ischaemic stroke. Patient selection based on non-invasive neuroimaging has emerged as a critical step in acute ischaemic stroke management. The more sophisticated imaging-based selection, those assessing collateral blood flow or ischaemic penumbra appear to be associated with better outcomes and possibly fewer complications. The importance of achieving effective, quality reperfusion is also demonstrated, in a remarkably linear fashion, across the 5 published trials. This may emerge as the single most important determinant of functional outcomes. While reperfusion may succeed time as the preeminent modifiable variable, it remains clear that achieving quality reperfusion in a timely manner should remain the goal of all acute stroke programs. Key Message: Comparing the recent successful endovascular stroke trials, both between one another, and to their unsuccessful predecessors, emphasizes the importance of patient selection, time and reperfusion. Highlighting these factors allows for a better understanding of the challenges facing clinicians and the changes required to be made in hospital systems in order to achieve a new standard of care in treating acute ischaemic stroke.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke.

          Randomized clinical trials suggest the benefit of intravenous tissue-type plasminogen activator (tPA) in acute ischemic stroke is time dependent. However, modest sample sizes have limited characterization of the extent to which onset to treatment (OTT) time influences outcome; and the generalizability of findings to clinical practice is uncertain. To evaluate the degree to which OTT time is associated with outcome among patients with acute ischemic stroke treated with intraveneous tPA. Data were analyzed from 58,353 patients with acute ischemic stroke treated with tPA within 4.5 hours of symptom onset in 1395 hospitals participating in the Get With The Guidelines-Stroke Program, April 2003 to March 2012. Relationship between OTT time and in-hospital mortality, symptomatic intracranial hemorrhage, ambulatory status at discharge, and discharge destination. Among the 58,353 tPA-treated patients, median age was 72 years, 50.3% were women, median OTT time was 144 minutes (interquartile range, 115-170), 9.3% (5404) had OTT time of 0 to 90 minutes, 77.2% (45,029) had OTT time of 91 to 180 minutes, and 13.6% (7920) had OTT time of 181 to 270 minutes. Median pretreatment National Institutes of Health Stroke Scale documented in 87.7% of patients was 11 (interquartile range, 6-17). Patient factors most strongly associated with shorter OTT included greater stroke severity (odds ratio [OR], 2.8; 95% CI, 2.5-3.1 per 5-point increase), arrival by ambulance (OR, 5.9; 95% CI, 4.5-7.3), and arrival during regular hours (OR, 4.6; 95% CI, 3.8-5.4). Overall, there were 5142 (8.8%) in-hospital deaths, 2873 (4.9%) patients had intracranial hemorrhage, 19,491 (33.4%) patients achieved independent ambulation at hospital discharge, and 22,541 (38.6%) patients were discharged to home. Faster OTT, in 15-minute increments, was associated with reduced in-hospital mortality (OR, 0.96; 95% CI, 0.95-0.98; P < .001), reduced symptomatic intracranial hemorrhage (OR, 0.96; 95% CI, 0.95-0.98; P < .001), increased achievement of independent ambulation at discharge (OR, 1.04; 95% CI, 1.03-1.05; P < .001), and increased discharge to home (OR, 1.03; 95% CI, 1.02-1.04; P < .001). In a registry representing US clinical practice, earlier thrombolytic treatment was associated with reduced mortality and symptomatic intracranial hemorrhage, and higher rates of independent ambulation at discharge and discharge to home following acute ischemic stroke. These findings support intensive efforts to accelerate hospital presentation and thrombolytic treatment in patients with stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study.

            Whether endovascular stroke treatment improves clinical outcomes is unclear because of the paucity of data from randomised placebo-controlled trials. We aimed to establish whether MRI can be used to identify patients who are most likely to benefit from endovascular reperfusion. In this prospective cohort study we consecutively enrolled patients scheduled to have endovascular treatment within 12 h of onset of stroke at eight centres in the USA and one in Austria. Aided by an automated image analysis computer program, investigators interpreted a baseline MRI scan taken before treatment to establish whether the patient had an MRI profile (target mismatch) that suggested salvageable tissue was present. Reperfusion was assessed on an early follow-up MRI scan (within 12 h of the revascularisation procedure) and defined as a more than 50% reduction in the volume of the lesion from baseline on perfusion-weighted MRI. The primary outcome was favourable clinical response, defined as an improvement of 8 or more on the National Institutes of Health Stroke Scale between baseline and day 30 or a score of 0-1 at day 30. The secondary clinical endpoint was good functional outcome, defined as a modified Rankin scale score of 2 or less at day 90. Analyses were adjusted for imbalances in baseline predictors of outcome. Investigators assessing outcomes were masked to baseline data. 138 patients were enrolled. 110 patients had catheter angiography and of these 104 had an MRI profile and 99 could be assessed for reperfusion. 46 of 78 (59%) patients with target mismatch and 12 of 21 (57%) patients without target mismatch had reperfusion after endovascular treatment. The adjusted odds ratio (OR) for favourable clinical response associated with reperfusion was 8·8 (95% CI 2·7-29·0) in the target mismatch group and 0·2 (0·0-1·6) in the no target mismatch group (p=0·003 for difference between ORs). Reperfusion was associated with increased good functional outcome at 90 days (OR 4·0, 95% CI 1·3-12·2) in the target mismatch group, but not in the no target mismatch group (1·9, 0·2-18·7). Target mismatch patients who had early reperfusion after endovascular stroke treatment had more favourable clinical outcomes. No association between reperfusion and favourable outcomes was present in patients without target mismatch. Our data suggest that a randomised controlled trial of endovascular treatment for patients with the target mismatch profile is warranted. National Institute for Neurological Disorders and Stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reducing in-hospital delay to 20 minutes in stroke thrombolysis.

              Efficacy of thrombolytic therapy for ischemic stroke decreases with time elapsed from symptom onset. We analyzed the effect of interventions aimed to reduce treatment delays in our single-center observational series. All consecutive ischemic stroke patients treated with IV alteplase (tissue plasminogen activator [tPA]) were prospectively registered in the Helsinki Stroke Thrombolysis Registry. A series of interventions to reduce treatment delays were implemented over the years 1998 to 2011. In-hospital delays were analyzed as annual median door-to-needle time (DNT) in minutes, with interquartile range. A total of 1,860 patients were treated between June 1995 and June 2011, which included 174 patients with basilar artery occlusion (BAO) treated mostly beyond 4.5 hours from symptom onset. In the non-BAO patients, the DNT was reduced annually, from median 105 minutes (65-120) in 1998, to 60 minutes (48-80) in 2003, further on to 20 minutes (14-32) in 2011. In 2011, we treated with tPA 31% of ischemic stroke patients admitted to our hospital. Of these, 94% were treated within 60 minutes from arrival. Performing angiography or perfusion imaging doubled the in-hospital delays. Patients with in-hospital stroke or arriving very soon from symptom onset had longer delays because there was no time to prepare for their arrival. With multiple concurrent strategies it is possible to cut the median in-hospital delay to 20 minutes. The key is to do as little as possible after the patient has arrived at the emergency room and as much as possible before that, while the patient is being transported.
                Bookmark

                Author and article information

                Journal
                CED
                Cerebrovasc Dis
                10.1159/issn.1015-9770
                Cerebrovascular Diseases
                Cerebrovasc Dis
                S. Karger AG (Basel, Switzerland karger@ 123456karger.com http://www.karger.com )
                1015-9770
                1421-9786
                July 2016
                26 April 2016
                : 42
                : 3-4
                : 170-177
                Affiliations
                aDepartment of Radiology and Neurological Surgery, College of Physicians and Surgeons, Columbia University, New York, N.Y., USA; bFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia; cDepartment of Intracranial Endovascular Therapy, Alfried-Krupp Krankenhaus Hospital, Essen, Germany
                Article
                CED20160423-4170 Cerebrovasc Dis 2016;42:170-177
                10.1159/000445449
                27111086
                14ef809e-a28b-4de9-bb91-310c9b13b230
                © 2016 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 25 January 2016
                : 11 March 2016
                Page count
                Figures: 3, References: 45, Pages: 8
                Categories
                Review

                Medicine,General social science
                Ischaemic stroke,Penumbra,Reperfusion,Thrombolysis,Endovascular,Stent-retriever,Thrombectomy

                Comments

                Comment on this article