5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ‘ Candidatus Liberibacter asiaticus’

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Orange fruit from trees infected by ‘ Candidatus Liberibacter asiaticus’ ( CaLas) often do not look fully mature and exhibit off-flavours described as bitter, harsh, and metallic rather than juicy and fruity. Although previous studies have been carried out to understand the effect of CaLas on the flavour of orange juice using metabolomic methods, the mechanisms leading to the off-flavour that occurs in Huanglongbing (HLB)-symptomatic fruit are not well understood. In this study, fruits were collected from symptomatic and healthy Valencia sweet orange ( Citrus sinensis) trees grafted on Swingle ( C. paradisi X Poncirus trifoliata) rootstock. Isobaric tags for relative and absolute quantification (iTRAQ) and gas chromatography-mass spectrometry (GC-MS) were used to measure the proteins, sugars, organic acids, amino acids, and volatile terpenoids. The results showed that most of the differentially expressed proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis were degraded, and terpenoid metabolism was significantly downregulated in the symptomatic fruit. Valencene, limonene, 3-carene, linalool, myrcene, and α-terpineol levels were significantly lower in fruit from CaLas-infected trees than from healthy trees. Similar phenomena were observed for sucrose and glucose. Our study indicated that off-flavour of symptomatic fruit was associated with a reduction in the levels of terpenoid products and the downregulation of proteins in glycolysis, the TCA cycle, and the terpenoid biosynthesis pathway.

          Pathogenic profiling: why fruit from bacteria-infected trees tastes bad

          The bacteria Candidatus Liberibacter asiaticus ( CaLas) causes orange trees to produce poor-tasting fruit thanks to the decreased production of flavour-enhancing proteins, sugars, and metabolites. The University of Florida’s Frederick Gmitter and his team of US and Chinese scientists profiled the proteins and metabolites of healthy Valencia sweet orange trees infected with CaLas, a bacterial pathogen that causes the citrus disease Huanglongbing and reduces the quantity and quality of fruit and juice. The researchers found 123 differentially-expressed proteins and decreased numbers of taste-enhancing constituents, including those mediated by key energy-producing processes. This degradation involved a class of chemicals called terpenoids, which the authors link to poor quality fruit. These results provide insights into the pathogenesis of CaLas infection and could empower future studies to prevent the impact of the bacteria and Huanglongbing infection.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly".

          The increasing popularity of iTRAQ for quantitative proteomics applications makes it necessary to evaluate its relevance, accuracy, and precision for biological interpretation. Here, we have assessed (a) the accuracy and precision of iTRAQ quantification in a controlled experimental setup, using low- and high-complexity protein mixtures; and (b) the potential pitfalls that hamper the applicability and attainable dynamic range of iTRAQ: isotopic contamination, background interference, and signal-to-noise ratio. Our data suggest greater dynamic crosstalk between interfering factors affecting underestimations, and that these interferences were largely scenario-specific, dependent on sample complexity. The good is the potential for iTRAQ to provide accurate quantification spanning 2 orders of magnitude. This potential is however limited by two factors. (1) The bad: the existence of isotopic impurities that can be corrected for; provided accurate isotopic factors are at one's disposal. (2) The ugly: we demonstrate here the interference of mixed MS/MS contribution occurring during precursor selection, an issue that is currently very difficult to minimize. In light of our results, we propose a list of advice for iTRAQ data analysis that could routinely ameliorate quantitative interpretation of proteomic data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: microscopy and microarray analyses.

            Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium 'Candidatus Liberibacter spp.' In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 33,879 expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. The anatomical analyses indicated that HLB bacterium infection caused phloem disruption, sucrose accumulation, and plugged sieve pores. The up-regulation of three key starch biosynthetic genes including ADP-glucose pyrophosphorylase, starch synthase, granule-bound starch synthase and starch debranching enzyme likely contributed to accumulation of starch in HLB-affected leaves. The HLB-associated phloem blockage resulted from the plugged sieve pores rather than the HLB bacterial aggregates since 'Ca. Liberibacter asiaticus' does not form aggregate in citrus. The up-regulation of pp2 gene is related to callose deposition to plug the sieve pores in HLB-affected plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family.

              Arabidopsis thaliana has nine genes that constitute a family of putative carotenoid cleavage dioxygenases (CCDs). While five members of the family are believed to be involved in synthesis of the phytohormone abscisic acid, the functions of the other four enzymes are less clear. Recently two of the enzymes, CCD7/MAX3 and CCD8/MAX4, have been implicated in synthesis of a novel apocarotenoid hormone that controls lateral shoot growth. Here, we report on the molecular and genetic interactions between CCD1, CCD7/MAX3 and CCD8/MAX4. CCD1 distinguishes itself from other reported CCDs as being the only member not targeted to the plastid. Unlike ccd7/max3 and ccd8/max4, both characterized as having highly branched phenotypes, ccd1 loss-of-function mutants are indistinguishable from wild-type plants. Thus, even though CCD1 has similar enzymatic activity to CCD7/MAX3, it does not have a role in synthesis of the lateral shoot growth inhibitor. Rather, it may have a role in synthesis of apocarotenoid flavor and aroma volatiles, especially in maturing seeds where loss of function leads to significantly higher carotenoid levels.
                Bookmark

                Author and article information

                Contributors
                +863 956 8878 , fgmitter@ufl.edu
                Journal
                Hortic Res
                Hortic Res
                Horticulture Research
                Nature Publishing Group UK (London )
                2052-7276
                14 February 2019
                14 February 2019
                2019
                : 6
                : 31
                Affiliations
                [1 ]GRID grid.263906.8, Citrus Research Institute, , Southwest University, ; Chongqing, China
                [2 ]ISNI 0000 0004 1936 8091, GRID grid.15276.37, Citrus Research and Education Center, , University of Florida, ; Lake Alfred, FL 33850 USA
                Author information
                http://orcid.org/0000-0002-7499-0022
                Article
                109
                10.1038/s41438-018-0109-z
                6375920
                14f4d0f0-28c9-47ad-8977-0ccd009c1a8b
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 August 2018
                : 11 November 2018
                : 15 November 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Comments

                Comment on this article