79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surface Modifications and Their Effects on Titanium Dental Implants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Surface treatments of titanium dental implants for rapid osseointegration.

          The osseointegration rate of titanium dental implants is related to their composition and surface roughness. Rough-surfaced implants favor both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. The different methods used for increasing surface roughness or applying osteoconductive coatings to titanium dental implants are reviewed. Surface treatments, such as titanium plasma-spraying, grit-blasting, acid-etching, anodization or calcium phosphate coatings, and their corresponding surface morphologies and properties are described. Most of these surfaces are commercially available and have proven clinical efficacy (>95% over 5 years). The precise role of surface chemistry and topography on the early events in dental implant osseointegration remain poorly understood. In addition, comparative clinical studies with different implant surfaces are rarely performed. The future of dental implantology should aim to develop surfaces with controlled and standardized topography or chemistry. This approach will be the only way to understand the interactions between proteins, cells and tissues, and implant surfaces. The local release of bone stimulating or resorptive drugs in the peri-implant region may also respond to difficult clinical situations with poor bone quality and quantity. These therapeutic strategies should ultimately enhance the osseointegration process of dental implants for their immediate loading and long-term success.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Surface modification of titanium, titanium alloys, and related materials for biomedical applications

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bioactive glass ceramics: properties and applications.

              Heat treatment of an MgO-CaO-SiO2-P2O5 glass gave a glass ceramic containing crystalline apatite (Ca10(PO4)6O,F2] and beta-wollastonite (CaO,SiO2) in an MgO-CaO-SiO2 glassy matrix. It showed bioactivity and a fairly high mechanical strength which decreased only slowly, even under load-bearing conditions in the body. It is used clinically as artificial vertebrae, iliac bones, etc. The bioactivity of this glass ceramic was attributed to apatite formation on its surface in the body. Dissolution of calcium and silicate ions from the glass ceramic was considered to play an important role in forming the surface apatite layer. It was shown that some new kinds of bioactive materials can be developed from CaO,SiO2-based glasses. Ceramics, metals and organic polymers coated with bone-like apatite were obtained when such materials were placed in the vicinity of a CaO,SiO2-based glass in a simulated body fluid. A bioactive bone cement which was hardened within 4 min and bonded to living bone, forming an apatite, was obtained by mixing a CaO,SiO2-based glass powder with a neutral ammonium phosphate solution. Its compressive strength reached 80 MPa comparable to that of poly(methyl methacrylate) within 3 d. A bioactive and ferromagnetic glass ceramic containing crystalline magnetite (Fe3O4) in a matrix of CaO,SiO2-based glassy and crystalline phases was obtained by a heat treatment of a Fe2O3-CaO.SiO2-B2O3-P2O5 glass. This glass ceramic was shown to be useful as thermoseeds for hyperthermia treatment of cancer.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                7 September 2015
                : 2015
                : 791725
                Affiliations
                1Department of Mechanical & Materials Engineering, Faculty of Engineering and Built Environment, UKM, 43600 Bangi, Selangor Darul Ehsan, Malaysia
                2Department of Peridontology, Faculty of Dentistry, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
                3Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka-Cho, Nagaoka-shi, Niigata 940-2188, Japan
                Author notes

                Academic Editor: Seunghan Oh

                Article
                10.1155/2015/791725
                4575991
                26436097
                15017660-a6c5-4d34-8878-aaffc69434c5
                Copyright © 2015 A. Jemat et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 April 2015
                : 15 June 2015
                : 16 June 2015
                Categories
                Review Article

                Comments

                Comment on this article