9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RNAi assay in primary cells: a new method for gene function analysis in marine bivalve.

      Molecular Biology Reports
      Animals, Antibodies, immunology, Bivalvia, genetics, metabolism, Ferritins, Gene Expression, Primary Cell Culture, RNA Interference, RNA, Double-Stranded, chemical synthesis, RNA, Messenger

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference (RNAi) is an effective approach for gene function analysis, which is well developed in mammal cell lines. However, RNAi has rarely been reported in marine bivalve species. To provide support on functional analysis of bivalve genes, for the first time to our knowledge, we conducted RNAi assay on primary cell of clam Meretrix meretrix in this study. Firstly we explored the method of culturing primary cells of M. meretrix to ensure the cells to live at high activity for at least 2 weeks. Ferritin gene was chosen as the target gene and RNAi assay was conducted through soaking the primary cells of M. meretrix digestive gland in medium containing dsRNA of ferritin gene. Realtime PCR, western blot and immunocytochemistry analysis were used to analyze the inhibition of gene expression after RNAi. Results showed the ferritin mRNA was significantly down-regulated by 66.11% after RNAi. Western blot result showed that the expression level of ferritin protein was also depressed post RNAi. The method developed in this study proved to be reliable and effective for RNAi assay on marine bivalve cells. It would be an efficient tool for gene function analysis in marine bivalves and more studies based on primary cells of marine bivalves can be expected.

          Related collections

          Author and article information

          Comments

          Comment on this article