+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Infectious Diseases and Extinction Risk in Wild Mammals Translated title: Enfermedades Infecciosas y Riesgo de Extinción en Mamíferos Silvestres


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Abstract:  Parasite‐driven declines in wildlife have become increasingly common and can pose significant risks to natural populations. We used the IUCN Red List of Threatened and Endangered Species and compiled data on hosts threatened by infectious disease and their parasites to better understand the role of infectious disease in contemporary host extinctions. The majority of mammal species considered threatened by parasites were either carnivores or artiodactyls, two clades that include the majority of domesticated animals. Parasites affecting host threat status were predominantly viruses and bacteria that infect a wide range of host species, including domesticated animals. Counter to our predictions, parasites transmitted by close contact were more likely to cause extinction risk than those transmitted by other routes. Mammal species threatened by parasites were not better studied for infectious diseases than other threatened mammals and did not have more parasites or differ in four key traits demonstrated to affect parasite species richness in other comparative studies. Our findings underscore the need for better information concerning the distribution and impacts of infectious diseases in populations of endangered mammals. In addition, our results suggest that evolutionary similarity to domesticated animals may be a key factor associated with parasite‐mediated declines; thus, efforts to limit contact between domesticated hosts and wildlife could reduce extinction risk.

          Translated abstract

          Resumen:  Las declinaciones de vida silvestre debido a parásitos se han vuelto más comunes y pueden ser riesgos significativos para las poblaciones naturales. Utilizamos la Lista Roja de IUCN de Especies Amenazadas y en Peligro y compilamos datos sobre huéspedes amenazados por enfermedades infecciosas y sus parásitos para comprender el papel de enfermedades infecciosas en las extinciones contemporáneas de huéspedes. La mayoría de las especies de mamíferos consideradas amenazadas por parásitos fueron carnívoros o artiodáctilos, dos clados que incluyen a la mayoría de los animales domesticados. Los parásitos que afectan el estatus amenazado de huéspedes son predominantemente virus y bacterias que infectan a una amplia gama de especies huésped, incluyendo animales domésticos. Contrario a nuestras predicciones, los parásitos transmitidos por contacto cercano tuvieron mayor probabilidad de causar riesgo de extinción que los transmitidos por otras rutas. Las especies de mamíferos amenazadas por parásitos no fueron mejor estudiadas para enfermedades infecciosas que otros mamíferos amenazados y no tuvieron más parásitos ni difirieron en cuatro características clave que afectan la riqueza de especies de parásitos en otros estudios comparativos. Nuestros hallazgos subrayan la necesidad de mayor información relacionada con la distribución e impacto de enfermedades infecciosas en poblaciones de mamíferos en peligro. Adicionalmente, nuestros resultados sugieren que la similitud evolutiva con animales domesticados puede ser un factor clave asociados con las declinaciones debidas a parásitos; por lo tanto, los esfuerzos para limitar contacto entre huéspedes domesticados y vida silvestre podrían reducir el riesgo de extinción.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple causes of high extinction risk in large mammal species.

          Many large animal species have a high risk of extinction. This is usually thought to result simply from the way that species traits associated with vulnerability, such as low reproductive rates, scale with body size. In a broad-scale analysis of extinction risk in mammals, we find two additional patterns in the size selectivity of extinction risk. First, impacts of both intrinsic and environmental factors increase sharply above a threshold body mass around 3 kilograms. Second, whereas extinction risk in smaller species is driven by environmental factors, in larger species it is driven by a combination of environmental factors and intrinsic traits. Thus, the disadvantages of large size are greater than generally recognized, and future loss of large mammal biodiversity could be far more rapid than expected.
            • Record: found
            • Abstract: not found
            • Article: not found

            Invasive species are a leading cause of animal extinctions.

              • Record: found
              • Abstract: found
              • Article: not found

              Rates of spontaneous mutation.

              Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates.

                Author and article information

                Conserv Biol
                Conserv. Biol
                Conservation Biology
                Blackwell Publishing Inc (Malden, USA )
                19 September 2007
                October 2007
                : 21
                : 5 ( doiID: 10.1111/cbi.2007.21.issue-5 )
                : 1269-1279
                [ 1 ]Odum School of Ecology, University of Georgia, Athens, GA 30602, U.S.A., and Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
                [ 2 ]Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
                [ 3 ]Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, United Kingdom
                [ 4 ]Department of Integrative Biology, University of California, Berkeley, CA, U.S.A.
                Author notes
                [* ] ‡‡ email a.pedersen@sheffield.ac.uk a.pedersen@ 123456sheffield.ac.uk

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                Page count
                links-crossref: 99, Figures: 3, Tables: 2, Equations: 0, References: 53, Pages: 11
                Contributed Papers
                Custom metadata
                October 2007
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020


                Comment on this article