27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperspectral Computed Tomographic Imaging Spectroscopy of Vascular Oxygen Gradients in the Rabbit Retina In Vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diagnosis of retinal vascular diseases depends on ophthalmoscopic findings that most often occur after severe visual loss (as in vein occlusions) or chronic changes that are irreversible (as in diabetic retinopathy). Despite recent advances, diagnostic imaging currently reveals very little about the vascular function and local oxygen delivery. One potentially useful measure of vascular function is measurement of hemoglobin oxygen content. In this paper, we demonstrate a novel method of accurately, rapidly and easily measuring oxygen saturation within retinal vessels using in vivo imaging spectroscopy. This method uses a commercially available fundus camera coupled to two-dimensional diffracting optics that scatter the incident light onto a focal plane array in a calibrated pattern. Computed tomographic algorithms are used to reconstruct the diffracted spectral patterns into wavelength components of the original image. In this paper the spectral components of oxy- and deoxyhemoglobin are analyzed from the vessels within the image. Up to 76 spectral measurements can be made in only a few milliseconds and used to quantify the oxygen saturation within the retinal vessels over a 10–15 degree field. The method described here can acquire 10-fold more spectral data in much less time than conventional oximetry systems (while utilizing the commonly accepted fundus camera platform). Application of this method to animal models of retinal vascular disease and clinical subjects will provide useful and novel information about retinal vascular disease and physiology.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperspectral remote sensing of plant pigments.

          The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automatic retinal oximetry.

            To measure hemoglobin oxygen saturation (SO(2)) in retinal vessels and to test the reproducibility and sensitivity of an automatic spectrophotometric oximeter. Specialized software automatically identifies the retinal blood vessels on fundus images, which are obtained with four different wavelengths of light. The software calculates optical density ratios (ODRs) for each vessel. The reproducibility was evaluated by analyzing five repeated measurements of the same vessels. A linear relationship between SO(2) and ODR was assumed and a linear model derived. After calibration, reproducibility and sensitivity were calculated in terms of SO(2). Systemic hyperoxia (n = 16) was induced in healthy volunteers by changing the O(2) concentration in inhaled air from 21% to 100%. The automatic software enhanced reproducibility, and the mean SD for repeated measurements was 3.7% for arterioles and 5.3% venules, in terms of percentage of SO(2) (five repeats, 10 individuals). The model derived for calibration was SO(2) = 125 - 142 . ODR. The arterial SO(2) measured 96% +/- 9% (mean +/- SD) during normoxia and 101% +/- 8% during hyperoxia (n = 16). The difference between normoxia and hyperoxia was significant (P = 0.0027, paired t-test). Corresponding numbers for venules were 55% +/- 14% and 78% +/- 15% (P < 0.0001). SO(2) is displayed as a pseudocolor map drawn on fundus images. The retinal oximeter is reliable, easy to use, and sensitive to changes in SO(2) when concentration of O(2) in inhaled air is changed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetic patients with retinopathy show increased retinal venous oxygen saturation.

              Longstanding diabetes mellitus results in a disturbed microcirculation. A new imaging oximeter was used to investigate the effect of this disturbance on retinal vessel oxygen saturation. The haemoglobin oxygen saturation was measured in the retinal arterioles and venules of 41 diabetic patients (65 +/- 12.3 years) with mild non-proliferative through proliferative diabetic retinopathy (DR). Twelve individuals (61.3 +/- 6.2 years, mean +/- standard deviation) without systemic or ocular disease were investigated as controls. Measurements were taken by an imaging oximeter (oxygen module by Imedos GmbH, Jena). This technique is based on the proportionality of the oxygen saturation and ratio of the optical density of the vessel at two wavelengths (548 nm and 610 nm). Whereas there were no significant differences in the arterial oxygen saturation between controls and diabetic retinopathy at any stage, the venous oxygen saturation increased in diabetic patients with the severity of the retinopathy: controls 63 +/- 5%, mild non-proliferative DR 69 +/- 7%, moderate non-proliferative DR 70 +/- 5%, severe non-proliferative DR, 75 +/- 5%, and proliferative DR 75 +/- 8%. The increase of retinal vessel oxygen saturation in diabetic retinopathy points to a diabetic microvascular alteration. This may be due to occlusions and obliterations in the capillary bead and the formation of arterio-venous shunt vessels. On the other hand, hyperglycaemia-induced endothelial dysfunction, with subsequent suppression of the endothelial NO-synthase and disturbance of the vascular auto-regulation, may contribute to retinal tissue hypoxia.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                13 September 2011
                : 6
                : 9
                : e24482
                Affiliations
                [1 ]Doheny Eye Institute, University of Southern California, Los Angeles, California, United States of America
                [2 ]Department of Animal Resources and Veterinary Medicine, University of Southern California, Los Angeles, California, United States of America
                [3 ]Reichert Technologies, Buffalo, New York, United States of America
                [4 ]Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
                [5 ]Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
                University of Arizona, United States of America
                Author notes

                Conceived and designed the experiments: AHK MSH EK. Performed the experiments: AHK EK. Analyzed the data: AHK. Contributed reagents/materials/analysis tools: AHK MSH EK GM. Wrote the paper: AHK MSH GM.

                Article
                PONE-D-11-13156
                10.1371/journal.pone.0024482
                3172231
                21931729
                15200dad-ed7b-4358-bceb-a238aab07940
                Kashani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 July 2011
                : 11 August 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Engineering
                Bioengineering
                Medical Devices
                Medicine
                Anatomy and Physiology
                Ocular System
                Cardiovascular
                Hemodynamics
                Vascular Biology
                Drugs and Devices
                Medical Devices
                Ophthalmology
                Retinal Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article