26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The precedence effect

      , , ,
      The Journal of the Acoustical Society of America
      Acoustical Society of America (ASA)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a reverberant environment, sounds reach the ears through several paths. Although the direct sound is followed by multiple reflections, which would be audible in isolation, the first-arriving wavefront dominates many aspects of perception. The "precedence effect" refers to a group of phenomena that are thought to be involved in resolving competition for perception and localization between a direct sound and a reflection. This article is divided into five major sections. First, it begins with a review of recent work on psychoacoustics, which divides the phenomena into measurements of fusion, localization dominance, and discrimination suppression. Second, buildup of precedence and breakdown of precedence are discussed. Third measurements in several animal species, developmental changes in humans, and animal studies are described. Fourth, recent physiological measurements that might be helpful in providing a fuller understanding of precedence effects are reviewed. Fifth, a number of psychophysical models are described which illustrate fundamentally different approaches and have distinct advantages and disadvantages. The purpose of this review is to provide a framework within which to describe the effects of precedence and to help in the integration of data from both psychophysical and physiological experiments. It is probably only through the combined efforts of these fields that a full theory of precedence will evolve and useful models will be developed.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Article: not found

          A place theory of sound localization.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auditory-nerve response from cats raised in a low-noise chamber.

            A litter of four cats, born and raised in a soundproofed chamber, was studied in an attempt to determine which, if any, features of the auditory-nerve response from routinely available cats might be due to the chronic effects of noise exposure. Two features of routine-normal response were especially suspect in this regard: (1) a "notch" in the distribution of single-unit thresholds centered at characteristic frequencies (CF's) near 3 kHz and (2) a compression of the distribution of rates of spontaneous discharge for units with CF above 10 kHz. A third feature of response in routine animals was the presence of a small number (roughly 10%) of units with virtually no spontaneous discharge and very high thresholds, sometimes 80 dB less sensitive than high-spontaneous units of similar CF. In the data from chamber-raised animals, the high-spontaneous units showed exceptionally low thresholds at all CF regions, however, there were signs of the midfrequency notch in the threshold distribution of at least two of these animals. The compression of the spontaneous rate distribution was not seen in any of the three most sensitive animals. The data suggest that there is a significant amount of "normal pathology" in the high-CF units from routine animals. Low-spontaneous, high-threshold units were present in all four chamber-raised ears with the same characteristics as in routine animals (exceptionally narrow tuning curves and exceptionally low maximum discharge rates) and at roughly the same percentage of the unit sample. A class of units with medium spontaneous rates and intermediate thresholds could also be identified. The possible significance of a classification of auditory-nerve units according to spontaneous rate is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sound localization by human listeners.

              In keeping with our promise earlier in this review, we summarize here the process by which we believe spatial cues are used for localizing a sound source in a free-field listening situation. We believe it entails two parallel processes: 1. The azimuth of the source is determined using differences in interaural time or interaural intensity, whichever is present. Wightman and colleagues (1989) believe the low-frequency temporal information is dominant if both are present. 2. The elevation of the source is determined from spectral shape cues. The received sound spectrum, as modified by the pinna, is in effect compared with a stored set of directional transfer functions. These are actually the spectra of a nearly flat source heard at various elevations. The elevation that corresponds to the best-matching transfer function is selected as the locus of the sound. Pinnae are similar enough between people that certain general rules (e.g. Blauert's boosted bands or Butler's covert peaks) can describe this process. Head motion is probably not a critical part of the localization process, except in cases where time permits a very detailed assessment of location, in which case one tries to localize the source by turning the head toward the putative location. Sound localization is only moderately more precise when the listener points directly toward the source. The process is not analogous to localizing a visual source on the fovea of the retina. Thus, head motion provides only a moderate increase in localization accuracy. Finally, current evidence does not support the view that auditory motion perception is anything more than detection of changes in static location over time.
                Bookmark

                Author and article information

                Journal
                The Journal of the Acoustical Society of America
                The Journal of the Acoustical Society of America
                Acoustical Society of America (ASA)
                0001-4966
                October 1999
                October 1999
                : 106
                : 4
                : 1633-1654
                Article
                10.1121/1.427914
                10530009
                153b1ca9-1c6c-4954-b096-6af49e6c0b40
                © 1999
                History

                Comments

                Comment on this article