Blog
About

28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spin Hall Effects in Metals

      IEEE Transactions on Magnetics

      Institute of Electrical and Electronics Engineers (IEEE)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references 209

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topological Insulators

           ,   (2011)
          Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantum Spin Hall Effect in Graphene

               E. Mele,  C. L. Kane (2004)
              We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the quantized transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are non chiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder and symmetry breaking fields are discussed.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Magnetics
                IEEE Trans. Magn.
                Institute of Electrical and Electronics Engineers (IEEE)
                0018-9464
                1941-0069
                October 2013
                October 2013
                : 49
                : 10
                : 5172-5193
                Article
                10.1109/TMAG.2013.2262947
                © 2013
                Product

                Comments

                Comment on this article