50
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Muscles Stiffness: Importance of State-Estimation to Account for Very Fast Motor Corrections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Feedback delays are a major challenge for any controlled process, and yet we are able to easily control limb movements with speed and grace. A popular hypothesis suggests that the brain largely mitigates the impact of feedback delays (∼50 ms) by regulating the limb intrinsic visco-elastic properties (or impedance) with muscle co-contraction, which generates forces proportional to changes in joint angle and velocity with zero delay. Although attractive, this hypothesis is often based on estimates of limb impedance that include neural feedback, and therefore describe the entire motor system. In addition, this approach does not systematically take into account that muscles exhibit high intrinsic impedance only for small perturbations (short-range impedance). As a consequence, it remains unclear how the nervous system handles large perturbations, as well as disturbances encountered during movement when short-range impedance cannot contribute. We address this issue by comparing feedback responses to load pulses applied to the elbow of human subjects with theoretical simulations. After validating the model parameters, we show that the ability of humans to generate fast and accurate corrective movements is compatible with a control strategy based on state estimation. We also highlight the merits of delay-uncompensated robust control, which can mitigate the impact of internal model errors, but at the cost of slowing feedback corrections. We speculate that the puzzling observation of presynaptic inhibition of peripheral afferents in the spinal cord at movement onset helps to counter the destabilizing transition from high muscle impedance during posture to low muscle impedance during movement.

          Author Summary

          Recent studies have investigated how the brain generates purposeful feedback responses to perturbations during motor control. One hypothesis suggests that the brain exploits the spring-like properties of muscles to counter perturbations. However, muscles exhibit high mechanical impedance only against small perturbations during posture, which questions the general contribution of intrinsic muscle impedance for feedback control. Alternatively, the brain may directly map sensory data into motor commands without compensating for sensorimotor delays, which is known to limit control performance. A third hypothesis suggests that neural activity following an external disturbance estimates the current state of the limb to generate a motor response. We used a perturbation paradigm where healthy participants were instructed to respond to perturbations within an extremely short time window. Comparing participants' performances with a model considering intrinsic joint impedance and conduction delays revealed that the case of state estimation was the best candidate control model to explain very fast corrective response of humans. This study emphasizes that model-based control can generate human-like rapid and stable feedback responses given low muscle stiffness and sensorimotor delays.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Adaptive representation of dynamics during learning of a motor task.

          We investigated how the CNS learns to control movements in different dynamical conditions, and how this learned behavior is represented. In particular, we considered the task of making reaching movements in the presence of externally imposed forces from a mechanical environment. This environment was a force field produced by a robot manipulandum, and the subjects made reaching movements while holding the end-effector of this manipulandum. Since the force field significantly changed the dynamics of the task, subjects' initial movements in the force field were grossly distorted compared to their movements in free space. However, with practice, hand trajectories in the force field converged to a path very similar to that observed in free space. This indicated that for reaching movements, there was a kinematic plan independent of dynamical conditions. The recovery of performance within the changed mechanical environment is motor adaptation. In order to investigate the mechanism underlying this adaptation, we considered the response to the sudden removal of the field after a training phase. The resulting trajectories, named aftereffects, were approximately mirror images of those that were observed when the subjects were initially exposed to the field. This suggested that the motor controller was gradually composing a model of the force field, a model that the nervous system used to predict and compensate for the forces imposed by the environment. In order to explore the structure of the model, we investigated whether adaptation to a force field, as presented in a small region, led to aftereffects in other regions of the workspace. We found that indeed there were aftereffects in workspace regions where no exposure to the field had taken place; that is, there was transfer beyond the boundary of the training data. This observation rules out the hypothesis that the subject's model of the force field was constructed as a narrow association between visited states and experienced forces; that is, adaptation was not via composition of a look-up table. In contrast, subjects modeled the force field by a combination of computational elements whose output was broadly tuned across the motor state space. These elements formed a model that extrapolated to outside the training region in a coordinate system similar to that of the joints and muscles rather than end-point forces. This geometric property suggests that the elements of the adaptive process represent dynamics of a motor task in terms of the intrinsic coordinate system of the sensors and actuators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A computational neuroanatomy for motor control.

            The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the "cost-to-go" during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computational mechanisms of sensorimotor control.

              In order to generate skilled and efficient actions, the motor system must find solutions to several problems inherent in sensorimotor control, including nonlinearity, nonstationarity, delays, redundancy, uncertainty, and noise. We review these problems and five computational mechanisms that the brain may use to limit their deleterious effects: optimal feedback control, impedance control, predictive control, Bayesian decision theory, and sensorimotor learning. Together, these computational mechanisms allow skilled and fluent sensorimotor behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2014
                9 October 2014
                14 October 2014
                : 10
                : 10
                : e1003869
                Affiliations
                [1 ]Centre for Neuroscience Studies, Queen's University, Kingston, Canada
                [2 ]Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
                University of Southern California, United States of America
                Author notes

                SHS is associated with BKIN Technologies that commercializes the robotic equipment used for the experiments.

                Conceived and designed the experiments: FC SHS. Performed the experiments: FC. Analyzed the data: FC SHS. Contributed reagents/materials/analysis tools: FC. Wrote the paper: FC SHS.

                Article
                PCOMPBIOL-D-14-00623
                10.1371/journal.pcbi.1003869
                4191878
                25299461
                15439ab1-d292-43d8-9977-a4524f79ca03
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 April 2014
                : 20 August 2014
                Page count
                Pages: 15
                Funding
                FC receives a salary fellowship award from the Canadian Institute of Health Research ( http://www.cihr-irsc.gc.ca/, fellowship code: 201102MFE-246249-210313). SHS holds a GlaxoSmithKlein Chair in Neuroscience. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Nervous System
                Motor System
                Computational Biology
                Computational Neuroscience
                Neuroscience
                Behavioral Neuroscience
                Reflexes
                Sensory Systems
                Engineering and Technology
                Control Engineering
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. The experimental data and the table of muscle parameters can be downloaded from the following public folder: http://limb.biomed.queensu.ca/publications/data_fc2014/.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article