59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      S-stars in the Galactic center and hypervelocity stars in the Galactic halo: two faces of the tidal breakup of stellar binaries by the central massive black hole?

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the S-stars moving in the Galactic center (GC), under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up evolution. We find that many statistical properties of the detected HVSs and S-stars can be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope ~-1.6). The total number of the captured companions is ~50 that have masses in the range ~3-7Msun and semimajor axes <~4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis ~300-1500 AU and a pericenter distance ~10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a closer star would offer an important test to general relativity. The majority of the surviving ejected companions of the S-stars are expected to be located at Galactocentric distances <~20 kpc, and have heliocentric radial velocities ~-500-1500 km/s and proper motions up to ~5-20 mas/yr. Future detection of these HVSs may provide evidence for the tidal-breakup formation mechanism of the S-stars.

          Related collections

          Author and article information

          Journal
          05 October 2012
          2013-10-02
          Article
          10.1088/0004-637X/768/2/153
          1210.1901
          1549ee46-6945-458e-8c0f-2b2a191bacab

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          updated to match the published version, 18 pages, 7 figures
          astro-ph.GA astro-ph.CO

          Comments

          Comment on this article