34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflationary Cosmology in Modified Gravity Theories

      ,
      Symmetry
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Planck 2013 results. XVI. Cosmological parameters

          We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters

            WMAP precision data enables accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat Lambda-dominated universe seeded by nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. With parameters fixed only by WMAP data, we can fit finer scale CMB measurements and measurements of large scle structure (galaxy surveys and the Lyman alpha forest). This simple model is also consistent with a host of other astronomical measurements. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements and Lyman alpha forest data to find the model's best fit cosmological parameters: h=0.71+0.04-0.03, Omega_b h^2=0.0224+-0.0009, Omega_m h^2=0.135+0.008-0.009, tau=0.17+-0.06, n_s(0.05/Mpc)=0.93+-0.03, and sigma_8=0.84+-0.04. WMAP's best determination of tau=0.17+-0.04 arises directly from the TE data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13.7+-0.2 Gyr. The data favors but does not require a slowly varying spectral index. By combining WMAP data with other astronomical data sets, we constrain the geometry of the universe, Omega_tot = 1.02 +- 0.02, the equation of state of the dark energy w = -1), and the energy density in stable neutrinos, Omega_nu h^2 < 0.0076 (95% confidence limit). For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

              We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.
                Bookmark

                Author and article information

                Journal
                SYMMAM
                Symmetry
                Symmetry
                MDPI AG
                2073-8994
                March 2015
                March 09 2015
                : 7
                : 1
                : 220-240
                Article
                10.3390/sym7010220
                154af249-41fb-433a-a0a1-714f7e118fb6
                © 2015

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article