94
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found

      Unraveling oxyntomodulin, GLP1's enigmatic brother

      research-article
      The Journal of Endocrinology
      BioScientifica

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxyntomodulin (OXM) is a peptide secreted from the L cells of the gut following nutrient ingestion. OXM is a dual agonist of the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) combining the effects of GLP1 and glucagon to act as a potentially more effective treatment for obesity than GLP1R agonists. Injections of OXM in humans cause a significant reduction in weight and appetite, as well as an increase in energy expenditure. Activation of GCGR is classically associated with an elevation in glucose levels, which would be deleterious in patients with T2DM, but the antidiabetic properties of GLP1R agonism would be expected to counteract this effect. Indeed, OXM administration improved glucose tolerance in diet-induced obese mice. Thus, dual agonists of the GCGR and GLP1R represent a new therapeutic approach for diabetes and obesity with the potential for enhanced weight loss and improvement in glycemic control beyond those of GLP1R agonists.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis.

          Pharmacotherapies that augment the incretin pathway have recently become available, but their role in the management of type 2 diabetes is not well defined. To assess the efficacy and safety of incretin-based therapy in adults with type 2 diabetes based on randomized controlled trials published in peer-reviewed journals or as abstracts. We searched MEDLINE (1966-May 20, 2007) and the Cochrane Central Register of Controlled Trials (second quarter, 2007) for English-language randomized controlled trials involving an incretin mimetic (glucagonlike peptide 1 [GLP-1] analogue) or enhancer (dipeptidyl peptidase 4 [DPP4] inhibitor). We also searched prescribing information, relevant Web sites, reference lists and citation sections of recovered articles, and abstracts presented at recent conferences. Randomized controlled trials were selected if they were at least 12 weeks in duration, compared incretin therapy with placebo or other diabetes medication, and reported hemoglobin A(1c) data in nonpregnant adults with type 2 diabetes. Two reviewers independently assessed trials for inclusion and extracted data. Differences were resolved by consensus. Meta-analyses were conducted for several efficacy and safety outcomes. Of 355 potentially relevant articles identified, 51 were retrieved for detailed evaluation and 29 met the inclusion criteria. Incretins lowered hemoglobin A(1c) compared with placebo (weighted mean difference, -0.97% [95% confidence interval {CI}, -1.13% to -0.81%] for GLP-1 analogues and -0.74% [95% CI, -0.85% to -0.62%] for DPP4 inhibitors) and were noninferior to other hypoglycemic agents. Glucagonlike peptide 1 analogues resulted in weight loss (1.4 kg and 4.8 kg vs placebo and insulin, respectively) while DPP4 inhibitors were weight neutral. Glucagonlike peptide 1 analogues had more gastrointestinal side effects (risk ratio, 2.9 [95% CI, 2.0-4.2] for nausea and 3.2 [95% CI, 2.5-4.4] for vomiting). Dipeptidyl peptidase 4 inhibitors had an increased risk of infection (risk ratio, 1.2 [95% CI, 1.0-1.4] for nasopharyngitis and 1.5 [95% CI, 1.0-2.2] for urinary tract infection) and headache (risk ratio, 1.4 [95% CI, 1.1-1.7]). All but 3 trials had a 30-week or shorter duration; thus, long-term efficacy and safety could not be evaluated. Incretin therapy offers an alternative option to currently available hypoglycemic agents for nonpregnant adults with type 2 diabetes, with modest efficacy and a favorable weight-change profile. Careful postmarketing surveillance for adverse effects, especially among the DPP4 inhibitors, and continued evaluation in longer-term studies and in clinical practice are required to determine the role of this new class among current pharmacotherapies for type 2 diabetes.
            • Record: found
            • Abstract: found
            • Article: not found

            U.K. prospective diabetes study 16. Overview of 6 years' therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group.

            The objective of the U.K. Prospective Diabetes Study is to determine whether improved blood glucose control in type II diabetes will prevent the complications of diabetes and whether any specific therapy is advantageous or disadvantageous. The study will report in 1998, when the median duration from randomization will be 11 years. This report is on the efficacy of therapy over 6 years of follow-up and the overall incidence of diabetic complications. Subjects comprised 4,209 newly diagnosed type II diabetic patients who after 3 months' diet were asymptomatic and had fasting plasma glucose (FPG) 6.0-15.0 mmol/l. The study consists of a randomized controlled trial with two main comparisons: 1) 3,867 patients with 1,138 allocated to conventional therapy, primarily with diet, and 2,729 allocated to intensive therapy with additional sulfonylurea or insulin, which increase insulin supply, aiming for FPG < 6 mmol/l; and 2) 753 obese patients with 411 allocated to conventional therapy and 342 allocated to intensive therapy with metformin, which enhances insulin sensitivity. In the first comparison, in 2,287 subjects studied for 6 years, intensive therapy with sulfonylurea and insulin similarly improved glucose control compared with conventional therapy, with median FPG at 1 year of 6.8 and 8.2 mmol/l, respectively (P < 0.0001). and median HbA1c of 6.1 and 6.8%, respectively (P < 0.0001). During the next 5 years, the FPG increased progressively on all therapies (P < 0.0001) with medians at 6 years in the conventional and intensive groups, FPG 9.5 and 7.8 mmol/l, and HbA1c 8.0 and 7.1%, respectively. The glycemic deterioration was associated with progressive loss of beta-cell function. In the second comparison, in 548 obese subjects studied for 6 years, metformin improved glucose control similarly to intensive therapy with sulfonylurea or insulin. Metformin did not increase body weight or increase the incidence of hypoglycemia to the same extent as therapy with sulfonylurea or insulin. A high incidence of clinical complications occurred by 6-year follow-up. Of all subjects, 18.0% had suffered one or more diabetes-related clinical endpoints, with 12.1% having a macrovascular and 5.7% a microvascular endpoint. Sulfonylurea, metformin, and insulin therapies were similarly effective in improving glucose control compared with a policy of diet therapy. The study is examining whether the continued improved glucose control, obtained by intensive therapy compared with conventional therapy (median over 6 years HbA1c 6.6% compared with 7.4%), will be clinically advantageous in maintaining health.
              • Record: found
              • Abstract: found
              • Article: not found

              Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides.

              Dipeptidyl-peptidase IV (DPP IV/CD26) has a dual function as a regulatory protease and as a binding protein. Its role in the inactivation of bioactive peptides was recognized 20 years ago due to its unique ability to liberate Xaa-Pro or Xaa-Ala dipeptides from the N-terminus of regulatory peptides, but further examples are now emerging from in vitro and vivo experiments. Despite the minimal N-terminal truncation by DPP IV, many mammalian regulatory peptides are inactivated--either totally or only differentially--for certain receptor subtypes. Important DPP IV substrates include neuropeptides like neuropeptide Y or endomorphin, circulating peptide hormones like peptide YY, growth hormone-releasing hormone, glucagon-like peptides(GLP)-1 and -2, gastric inhibitory polypeptide as well as paracrine chemokines like RANTES (regulated on activation normal T cell expressed and secreted), stromal cell-derived factor, eotaxin and macrophage-derived chemokine. Based on these findings the potential clinical uses of selective DPP IV inhibitors or DPP IV-resistant analogues, especially for the insulinotropic hormone GLP-1, have been tested to enhance insulin secretion and to improve glucose tolerance in diabetic animals. Thus, DPP IV appears to be a major physiological regulator for some regulatory peptides, neuropeptides, circulating hormones and chemokines.

                Author and article information

                Journal
                J Endocrinol
                J. Endocrinol
                JOE
                The Journal of Endocrinology
                BioScientifica (Bristol )
                0022-0795
                1479-6805
                December 2012
                27 September 2012
                : 215
                : 3
                : 335-346
                Affiliations
                [1]Diabetes and Endocrinology, Merck Research Laboratories Merck Sharp and Dohme Corp 126 East Lincoln Avenue, Rahway, New Jersey, 07065USA
                Author notes
                (Correspondence should be addressed to A Pocai; Email: alessandro_pocai@ 123456merck.com )
                Article
                JOE120368
                10.1530/JOE-12-0368
                3493657
                23019069
                154ca041-667f-414e-bfa1-a24cd43484b5
                © 2012 Society for Endocrinology

                This is an Open Access article distributed under the terms of the Society for Endocrinology's Re-use Licence which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 September 2012
                : 27 September 2012
                Categories
                Review

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article

                Related Documents Log