2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB

      , ,
      Journal of Clinical Investigation
      American Society for Clinical Investigation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid.

          Maintenance of a stable internal environment within complex organisms requires specialized cells that sense changes in the extracellular concentration of specific ions (such as Ca2+). Although the molecular nature of such ion sensors is unknown, parathyroid cells possess a cell surface Ca(2+)-sensing mechanism that also recognizes trivalent and polyvalent cations (such as neomycin) and couples by changes in phosphoinositide turnover and cytosolic Ca2+ to regulation of parathyroid hormone secretion. The latter restores normocalcaemia by acting on kidney and bone. We now report the cloning of complementary DNA encoding an extracellular Ca(2+)-sensing receptor from bovine parathyroid with pharmacological and functional properties nearly identical to those of the native receptor. The novel approximately 120K receptor shares limited similarity with the metabotropic glutamate receptors and features a large extracellular domain, containing clusters of acidic amino-acid residues possibly involved in calcium binding, coupled to a seven-membrane-spanning domain like those in the G-protein-coupled receptor superfamily.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1.

            The DiGeorge/velocardiofacial syndrome (DGS/VCFS) is a relatively common human disorder, usually associated with deletions of chromosome 22q11. The genetic basis for the wide range of developmental anomalies in the heart, glands and facial structures has been elusive. We have investigated the potential role of one candidate gene, Tbx1, which encodes a transcription factor of the T-box family, by producing a null mutation in mice. We found that mice heterozygous for the mutation had a high incidence of cardiac outflow tract anomalies, thus modeling one of the major abnormalities of the human syndrome. Moreover, Tbx1-/- mice displayed a wide range of developmental anomalies encompassing almost all of the common DGS/VCFS features, including hypoplasia of the thymus and parathyroid glands, cardiac outflow tract abnormalities, abnormal facial structures, abnormal vertebrae and cleft palate. On the basis of this phenotype in mice, we propose that TBX1 in humans is a key gene in the etiology of DGS/VCFS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice.

              DiGeorge syndrome is characterized by cardiovascular, thymus and parathyroid defects and craniofacial anomalies, and is usually caused by a heterozygous deletion of chromosomal region 22q11.2 (del22q11) (ref. 1). A targeted, heterozygous deletion, named Df(16)1, encompassing around 1 megabase of the homologous region in mouse causes cardiovascular abnormalities characteristic of the human disease. Here we have used a combination of chromosome engineering and P1 artificial chromosome transgenesis to localize the haploinsufficient gene in the region, Tbx1. We show that Tbx1, a member of the T-box transcription factor family, is required for normal development of the pharyngeal arch arteries in a gene dosage-dependent manner. Deletion of one copy of Tbx1 affects the development of the fourth pharyngeal arch arteries, whereas homozygous mutation severely disrupts the pharyngeal arch artery system. Our data show that haploinsufficiency of Tbx1 is sufficient to generate at least one important component of the DiGeorge syndrome phenotype in mice, and demonstrate the suitability of the mouse for the genetic dissection of microdeletion syndromes.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                October 15 2001
                October 15 2001
                : 108
                : 8
                : 1215-1220
                Article
                10.1172/JCI200113180
                154fe8cc-b4e6-4a03-baa4-c1cff4bd9b63
                © 2001
                History

                Comments

                Comment on this article