9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Case Study on the Use of Virtual Fencing to Intensively Graze Angus Heifers Using Moving Front and Back-Fences

      , ,
      Frontiers in Animal Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virtual fencing contains and controls grazing cattle using sensory cues rather than physical fences. The technology comprises a neckband-mounted device that delivers an audio cue when the animal nears a virtual boundary that has been set via global positioning system, followed by an electrical stimulus if it walks beyond the boundary. Virtual fencing has successfully been used to intensively graze cattle using a simple virtual front-fence, but a more complex intensive grazing system comprising moving virtual front and back-fences has not been assessed. We studied the effectiveness of virtual fencing technology to contain groups of Angus heifers within grazing cells defined by semi-permanent electric side-fences and virtual front and back-fences, compared to groups of heifers contained in cells defined only by electric fencing. Four groups of 10 Angus heifers were randomly allocated to a “control” (grazed with a conventional electric front and back-fence, n = 2 groups) or “virtual fence” treatment (grazed with a virtual front and back-fence, n = 2 groups). The groups of heifers grazed four adjacent experimental paddocks that were established using TechnoGrazing™ infrastructure. An estimated 9.5 kg pasture DM/heifer.day was offered in each of three 3 day allocations (9 day study period). Data collected include cues delivered by the neckbands, time beyond the virtual boundaries, pasture consumption for each allocation and heifer live weight changes over the study period. The virtual front and back-fences successfully contained one group of heifers in their grazing cell, but the second group of heifers spent an increasing amount of time in the exclusion zone during the second and third allocations and consequently received an increasing number of audio and electrical stimuli. There were no effects of electric or virtual-fence treatment on live weight change or pasture utilization. By grazing heifers in adjacent paddocks our experimental design may have produced a motivation for some heifers to cross the virtual boundary to regain close contact with familiar conspecifics. Despite this, valuable learnings were gained from this study. Most notably, virtual fencing should not be used to manage cattle that have close visual contact to other mobs. We conclude that the successful application of virtual fencing technology needs to accommodate the natural behaviors of cattle.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Cohesive Relationships in a Cattle Herd (Bos Indicus)

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Consistency of animal order in spontaneous group movements allows the measurement of leadership in a group of grazing heifers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Temporary Exclusion of Cattle from a Riparian Zone Using Virtual Fencing Technology

              Simple Summary Cattle can help to graze riparian zones when managed effectively. Virtual fencing technology, where cattle wear collar devices that provide audio followed by electrical signals around a GPS-based fence, could be used in areas that are difficult to physically fence. An early experimental automated collar device prototype was tested in excluding 10 cattle from a riparian zone in Australia. Animals were given free access to an 11.33-hectare area for three weeks, excluded from river access by a virtual fence for ten days (2.86-hectare inclusion zone), followed by free access again for six days. Animals were almost exclusively contained by the virtual fence. All animals approached the virtual fence over the trial duration and received both audio cues and electrical stimuli, but individual animals differed in how often they tested the virtual boundary. Over time, animals learned to respond to the audio cue alone to avoid receiving an electrical stimulus. Following fence deactivation all animals re-entered the previously excluded area. Further research with more groups and longer periods of exclusion using updated collar devices would determine the scope of virtual fencing technology for cattle grazing control. Abstract Grazing cattle can both negatively and positively impact riparian zones, dependent on controlled grazing management. Virtual fencing technology, using collar devices that operate via GPS can provide audio cues and electrical stimuli to temporarily exclude cattle from specified areas as desired. An early experimental prototype automated virtual fencing system was tested in excluding ten cattle from a riparian zone in Australia. Animals were given free access to an 11.33-hectare area for three weeks, excluded from river access by a virtual fence for ten days (2.86-hectare inclusion zone), followed by free access again for six days. Animals were almost exclusively contained by the virtual fence. All animals received audio cues and electrical stimuli with daily fence interactions, but there was high individual variation with some animals first approaching the fence more often than others. Overall, there was an approximately 25% probability that animals would receive an electrical stimulus following an audio cue. Individual associative learning may have been socially-facilitated by the group’s behaviour. Following fence deactivation, all animals re-entered the previously excluded area. Further research with more groups and longer periods of exclusion using updated collar devices would determine the scope of virtual fencing technology for cattle grazing control.
                Bookmark

                Author and article information

                Journal
                Frontiers in Animal Science
                Front. Anim. Sci.
                Frontiers Media SA
                2673-6225
                April 27 2021
                April 27 2021
                : 2
                Article
                10.3389/fanim.2021.663963
                155dfec8-bebd-4b38-b0b6-d56703e14f1e
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article