19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-30 family prevents uPAR-ITGB3 signaling activation through calcineurin-NFATC pathway to protect podocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urokinase plasminogen activator receptor (uPAR) is upregulated in podocytes of glomerular diseases and crucially mediates podocyte injury through integrin β3 (ITGB3). We previously showed that the miR-30 family maintains podocyte structure and function by inhibiting injurious calcineurin signaling through nuclear factor of activated T cells C (NFATC). Here, we tested whether the miR-30-calcineurin-NFATC and uPAR-ITGB3 pathways, two of the major pathways leading to podocyte injury, could interact. We found that podocyte-specific miR-30 knockdown in mice induced uPAR upregulation and ITGB3 activation, accompanied by proteinuria and podocyte injury. These effects of miR-30 knockdown were reduced using inhibitors of ITGB3, calcineurin, and NFATC, respectively, which are known to be antiproteinuric. These results indicate that miR-30 deficiency leads to calcineurin-NFATC signaling activation, which in turn activates the uPAR-ITGB3 pathway. In cultured podocytes, miR-30 knockdown also activated uPAR-ITGB3 signaling, leading to Rho GTPase activation, synaptopodin downregulation and podocyte injury. To explore uPAR-ITGB3 signaling regulation by miR-30 in podocytopathy development, we treated mice with lipopolysaccharide (LPS) and found that miR-30 was downregulated in podocytes, accompanied by uPAR upregulation and ITGB3 activation. We obtained the same results in cultured podocytes treated with LPS. Podocyte-specific transgenic miR-30 abolished uPAR-ITGB3 signaling and ameliorated podocyte injury and proteinuria in mice. Taken together, these experiments show that uPAR-ITGB3 signaling is negatively regulated by miR-30 through calcineurin-NFATC pathway, a novel mechanism underlying podocyte injury in glomerular diseases. Our study has elucidated the relationship among the crucial players governing podocyte pathophysiology and the antiproteinuric actions of drugs commonly used for podocytopathies.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of cell signalling by uPAR.

          Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation and tissue remodelling and in many human cancers, in which it frequently indicates poor prognosis. uPAR regulates proteolysis by binding the extracellular protease urokinase-type plasminogen activator (uPA; also known as urokinase) and also activates many intracellular signalling pathways. Coordination of extracellular matrix (ECM) proteolysis and cell signalling by uPAR underlies its important function in cell migration, proliferation and survival and makes it an attractive therapeutic target in cancer and inflammatory diseases. uPAR lacks transmembrane and intracellular domains and so requires transmembrane co-receptors for signalling. Integrins are essential uPAR signalling co-receptors and a second uPAR ligand, the ECM protein vitronectin, is also crucial for this process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Podocyte injury and its consequences.

            Podocytes maintain the glomerular filtration barrier, and the stability of this barrier depends on their highly differentiated postmitotic phenotype, which also defines the particular vulnerability of the glomerulus. Recent podocyte biology and gene disruption studies in vivo indicate a causal relationship between abnormalities of single podocyte molecules and proteinuria and glomerulosclerosis. Podocytes live under various stresses and pathological stimuli. They adapt to maintain homeostasis, but excessive stress leads to maladaptation with complex biological changes including loss of integrity and dysregulation of cellular metabolism. Podocyte injury causes proteinuria and detachment from the glomerular basement membrane. In addition to "sick" podocytes and their detachment, our understanding of glomerular responses following podocyte loss needs to address the pathways from podocyte injury to sclerosis. Studies have found a variety of glomerular responses to podocyte dysfunction in vivo, such as disruption of podocyte-endothelial cross talk and activation of podocyte-parietal cell interactions, all of which help us to understand the complex scenario of podocyte injury and its consequences. This review focuses on the cellular aspects of podocyte dysfunction and the adaptive or maladaptive glomerular responses to podocyte injury that lead to its major consequence, glomerulosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modification of kidney barrier function by the urokinase receptor.

              Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.
                Bookmark

                Author and article information

                Contributors
                +86-025-84803793 , shaolinshi1001@yahoo.com
                +86-025-84801992 , liuzhihong@nju.edu.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                24 May 2019
                24 May 2019
                June 2019
                : 10
                : 6
                : 401
                Affiliations
                ISNI 0000 0001 2314 964X, GRID grid.41156.37, National Clinical Research Center of Kidney Diseases, Jinling Hospital, , Nanjing University School of Medicine, ; Nanjing, Jiangsu 210002 China
                Article
                1625
                10.1038/s41419-019-1625-y
                6534572
                31127093
                155f2eea-2a95-4d5d-9107-1b38517df537
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 February 2019
                : 12 April 2019
                : 15 April 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100010904, National Science Foundation of China | Major International Joint Research Programme;
                Award ID: 81320108007
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100010905, National Science Foundation of China | Major Research Plan;
                Award ID: 91442104
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100010909, National Science Foundation of China | Young Scientists Fund;
                Award ID: 81600559
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81670653
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Cell biology
                cell signalling,mechanisms of disease
                Cell biology
                cell signalling, mechanisms of disease

                Comments

                Comment on this article