37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Semi-automatic quantification of 4D left ventricular blood flow

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The beating heart is the generator of blood flow through the cardiovascular system. Within the heart's own chambers, normal complex blood flow patterns can be disturbed by diseases. Methods for the quantification of intra-cardiac blood flow, with its 4D (3D+time) nature, are lacking. We sought to develop and validate a novel semi-automatic analysis approach that integrates flow and morphological data.

          Method

          In six healthy subjects and three patients with dilated cardiomyopathy, three-directional, three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) velocity data and balanced steady-state free-precession long- and short-axis images were acquired. The LV endocardium was segmented from the short-axis images at the times of isovolumetric contraction (IVC) and isovolumetric relaxation (IVR). At the time of IVC, pathlines were emitted from the IVC LV blood volume and traced forwards and backwards in time until IVR, thus including the entire cardiac cycle. The IVR volume was used to determine if and where the pathlines left the LV. This information was used to automatically separate the pathlines into four different components of flow: Direct Flow, Retained Inflow, Delayed Ejection Flow and Residual Volume. Blood volumes were calculated for every component by multiplying the number of pathlines with the blood volume represented by each pathline. The accuracy and inter- and intra-observer reproducibility of the approach were evaluated by analyzing volumes of LV inflow and outflow, the four flow components, and the end-diastolic volume.

          Results

          The volume and distribution of the LV flow components were determined in all subjects. The calculated LV outflow volumes [ml] (67 ± 13) appeared to fall in between those obtained by through-plane phase-contrast CMR (77 ± 16) and Doppler ultrasound (58 ± 10), respectively. Calculated volumes of LV inflow (68 ± 11) and outflow (67 ± 13) were well matched (NS). Low inter- and intra-observer variability for the assessment of the volumes of the flow components was obtained.

          Conclusions

          This semi-automatic analysis approach for the quantification of 4D blood flow resulted in accurate LV inflow and outflow volumes and a high reproducibility for the assessment of LV flow components.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Asymmetric redirection of flow through the heart.

          Through cardiac looping during embryonic development, paths of flow through the mature heart have direction changes and asymmetries whose topology and functional significance remain relatively unexplored. Here we show, using magnetic resonance velocity mapping, the asymmetric redirection of streaming blood in atrial and ventricular cavities of the adult human heart, with sinuous, chirally asymmetric paths of flow through the whole. On the basis of mapped flow fields and drawings that illustrate spatial relations between flow paths, we propose that asymmetries and curvatures of the looped heart have potential fluidic and dynamic advantages. Patterns of atrial filling seem to be asymmetric in a manner that allows the momentum of inflowing streams to be redirected towards atrio-ventricular valves, and the change in direction at ventricular level is such that recoil away from ejected blood is in a direction that can enhance rather than inhibit ventriculo-atrial coupling. Chiral asymmetry might help to minimize dissipative interaction between entering, recirculating and outflowing streams. These factors might combine to allow a reciprocating, sling-like, 'morphodynamic' mode of action to come into effect when heart rate and output increase during exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance.

            The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context. Three dimensional, three directional, time resolved magnetic resonance phase-contrast velocity mapping was performed at 1.5 Tesla in 17 normal subjects, 6 female, aged 44+/-14 years (mean+/-SD). We visualized and measured the relative volumes of LV flow components and the diastolic changes in inflowing kinetic energy (KE). Of total diastolic inflow volume, 44+/-11% followed a direct, albeit curved route to systolic ejection (videos 1 and 2), in contrast to 11% in a subject with mildly dilated cardiomyopathy (DCM), who was included for preliminary comparison (video 3). In normals, 16+/-8% of the KE of inflow was conserved to the end of diastole, compared with 5% in the DCM patient. Blood following the direct route lost or transferred less of its KE during diastole than blood that was retained until the next beat (1.6+/-1.0 millijoules vs 8.2+/-1.9 millijoules, p<0.05); whereas, in the DCM patient, the reduction in KE of retained inflow was 18-fold greater than that of the blood tracing the direct route. Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping.

              To determine the difference in flow patterns between healthy volunteers and ascending aortic aneurysm patients using time-resolved three-dimensional (3D) phase contrast magnetic resonance velocity (4D-flow) profiling. 4D-flow was performed on 19 healthy volunteers and 13 patients with ascending aortic aneurysms. Vector fields placed on 2D planes were visually graded to analyze helical and retrograde flow patterns along the aortic arch. Quantitative analysis of the pulsatile flow was carried out on manually segmented planes. In volunteers, flow progressed as follows: an initial jet of blood skewed toward the anterior right wall of the ascending aorta is reflected posterolaterally toward the inner curvature creating opposing helices, a right-handed helix along the left wall and a left-handed helix along the right wall; retrograde flow occurred in all volunteers along the inner curvature between the location of the two helices. In the aneurysm patients, the helices were larger; retrograde flow occurred earlier and lasted longer. The average velocity decreased between the ascending aorta and the transverse aorta in volunteers (47.9 mm/second decrease, P = 0.023), while in aneurysm patients the velocity increased (145 mm/second increase, P < 0.001). Dilation of the ascending aorta skews normal flow in the ascending aorta, changing retrograde and helical flow patterns. (c) 2007 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                J Cardiovasc Magn Reson
                Journal of Cardiovascular Magnetic Resonance
                BioMed Central
                1097-6647
                1532-429X
                2010
                12 February 2010
                : 12
                : 1
                : 9
                Affiliations
                [1 ]Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
                [2 ]Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
                [3 ]Department of Clinical Physiology, Linköping University Hospital, Linköping, Sweden
                [4 ]Division of Applied Thermodynamics and Fluid Mechanics, Department of Management and Engineering, Linköping University, Linköping, Sweden
                [5 ]Department of Medicine, University of California, San Francisco, California, USA
                Article
                1532-429X-12-9
                10.1186/1532-429X-12-9
                2831022
                20152026
                156620ee-a6fc-4d13-9039-c82ee649e6e1
                Copyright ©2010 Eriksson et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 September 2009
                : 12 February 2010
                Categories
                Research

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article

                scite_

                Similar content45

                Cited by57

                Most referenced authors181