4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antiproliferative and Apoptotic Activity of Chamaecyparis obtusa Leaf Extract against the HCT116 Human Colorectal Cancer Cell Line and Investigation of the Bioactive Compound by Gas Chromatography-Mass Spectrometry-Based Metabolomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chamaecyparis obtusa (CO) belongs to the Cupressaceae family, and it is found widely distributed in Japan and Korea. In this study, the anti-proliferative activities of the methanol and water extracts of CO leaves against a human colorectal cancer cell line (HCT116) were investigated. The methanol extract of CO leaves, at a concentration of 1.25 µg/mL, exhibited anti-proliferative activity against HCT116 cells, while displaying no cytotoxicity against Chang liver cells. Comparative global metabolite profiling was performed using gas chromatography-mass spectrometry coupled with multivariate statistical analysis, and it was revealed that anthricin was the major compound contributing to the anti-proliferative activity. The activation of c-Jun N-terminal kinases played a key role in the apoptotic effect of the methanol extract of CO leaves in HCT116 human colon cancer cells. These results suggest that the methanol extract and anthricin derived from CO leaves might be useful in the development of medicines with anti-colorectal cancer activity.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Mitogen-activated protein kinase pathways.

          Nearly all cell surface receptors utilize one or more of the mitogen-activated protein kinase cascades in their repertoire of signal transduction mechanisms. Recent advances in the study of such cascades include the cloning of genes encoding novel members of the cascades, further definition of the roles of the cascades in responses to extracellular signals, and examination of cross-talk between different cascades.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stress-activated protein kinase subfamily of c-Jun kinases.

            The mitogen-activated protein (MAP) kinases Erk-1 and Erk-2 are proline-directed kinases that are themselves activated through concomitant phosphorylation of tyrosine and threonine residues. The kinase p54 (M(r) 54,000), which was first isolated from cycloheximide-treated rats, is proline-directed like Erks-1/2, and requires both Tyr and Ser/Thr phosphorylation for activity. p54 is, however, distinct from Erks-1/2 in its substrate specificity, being unable to phosphorylate pp90rsk but more active in phosphorylating the c-Jun transactivation domain. Molecular cloning of p54 reveals a unique subfamily of extracellularly regulated kinases. Although they are 40-45% identical in sequence to Erks-1/2, unlike Erks-1/2 the p54s are only poorly activated in most cells by mitogens or phorbol esters. However, p54s are the principal c-Jun N-terminal kinases activated by cellular stress and tumour necrosis factor (TNF)-alpha, hence they are designated stress-activated protein kinases, or SAPKs. SAPKs are also activated by sphingomyelinase, which elicits a subset of cellular responses to TNF-alpha (ref. 9). SAPKs therefore define a new TNF-alpha and stress-activated signalling pathway, possibly initiated by sphingomyelin-based second messengers, which regulates the activity of c-Jun.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain.

              The activity of c-Jun is regulated by phosphorylation. Various stimuli including transforming oncogenes and UV light, induce phosphorylation of serines 63 and 73 in the amino-terminal activation domain of c-Jun and thereby potentiate its trans-activation function. We identified a serine/threonine kinase whose activity is stimulated by the same signals that stimulate the amino-terminal phosphorylation of c-Jun. This novel c-Jun amino-terminal kinase (JNK), whose major form is 46 kD, binds to a specific region within the c-Jun trans-activation domain and phosphorylates serines 63 and 73. Phosphorylation results in dissociation of the c-Jun-JNK complex. Mutations that disrupt the kinase-binding site attenuate the response of c-Jun to Ha-Ras and UV. Therefore the binding of JNK to c-Jun is of regulatory importance and suggests a mechanism through which protein kinase cascades can specifically modulate the activity of distinct nuclear targets.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                02 October 2015
                October 2015
                : 20
                : 10
                : 18066-18082
                Affiliations
                [1 ]College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea; E-Mails: khyoun412@ 123456naver.com (H.-Y.K.); www_12@ 123456hanmail.net (S.-G.L.); naya8729@ 123456naver.com (T.-J.O.); lsr911210@ 123456gmail.com (S.R.L.); sohyunvision@ 123456gmail.com (S.-H.K.)
                [2 ]Department of Food Science and Technology, Chung-Ang University, Anseong 456-756, Korea; E-Mail: hongjin@ 123456cau.ac.kr
                [3 ]Department of Food Science and Technology, Ewha Womans University, Seoul 120-750, Korea; E-Mail: yskim10@ 123456mm.ewha.ac.kr
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: hykychoi@ 123456cau.ac.kr ; Tel.: +82-2-820-5605; Fax: +82-2-812-3921.
                Article
                molecules-20-18066
                10.3390/molecules201018066
                6332506
                26445036
                157e230f-644c-4493-8322-e64499c7316c
                © 2015 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 September 2015
                : 29 September 2015
                Categories
                Article

                chamaecyparis obtusa,human colorectal cancer,metabolite profiling,gas chromatography-mass spectrometry,anthricin

                Comments

                Comment on this article