12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-30a inhibits BECN1-mediated autophagy in diabetic cataract

      research-article
      1 , 2 , 2 , 3 , 2
      Oncotarget
      Impact Journals LLC
      miR-30a, BECN1, autophagy, diabetic cataract, lens epithelial cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate the role of microRNAs in the regulation of autophagy and apoptosis in lens epithelial cells (LECs) during diabetic cataract formation.

          Methods

          A miRNA microarray study and quantitative real-time PCR were performed to identify the expression of miRNAs in LECs of diabetic cataract. Human LECs were cultured in high glucose conditions as a diabetic cataract model. BECN1 and LC3B were detected by Western blotting and quantitative real-time PCR. The extent of apoptosis was measured using FACSCalibur flow cytometry.

          Results

          Downregulation of miR-30a was identified in LECs attached to diabetic cataract tissues. By the bioinformatic assay and the luciferase activity assay, BECN1 was found to be a direct target of miR-30a. MiR-30a reduced the BECN1-mediated autophagy activity induced by high glucose in LECs in vitro. The ratio of LECs apoptosis was also decreased.

          Conclusion

          MiR-30a was involved in the inhibition of autophagy by targeting BECN1 in LECs in human diabetic cataract.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Global data on visual impairment in the year 2002.

          This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage.

            The p53 gene is frequently inactivated in human cancers. Here we have isolated a p53-inducible gene, p53R2, by using differential display to examine messenger RNAs in a cancer-derived human cell line carrying a highly regulated wild-type p53 expression system. p53R2 contains a p53-binding sequence in intron 1 and encodes a 351-amino-acid peptide with striking similarity to the ribonucleotide reductase small subunit (R2), which is important in DNA synthesis during cell division. Expression of p53R2, but not R2, was induced by ultraviolet and gamma-irradiation and adriamycin treatment in a wild-type p53-dependent manner. Induction of p53R2 in p53-deficient cells caused G2/M arrest and prevented cells from death in response to adriamycin. Inhibition of endogenous p53R2 expression in cells that have an intact p53-dependent DNA damage checkpoint reduced ribonucleotide reductase activity, DNA repair and cell survival after exposure to various genotoxins. Our results indicate that p53R2 encodes a ribonucleotide reductase that is directly involved in the p53 checkpoint for repair of damaged DNA. The discovery of p53R2 clarifies a relationship between a ribonucleotide reductase activity involved in repair of damaged DNA and tumour suppression by p53.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs and their regulatory roles in animals and plants.

              microRNAs (miRNAs) are an abundant class of newly identified endogenous non-protein-coding small RNAs. They exist in animals, plants, and viruses, and play an important role in gene silencing. Translational repression, mRNA cleavage, and mRNA decay initiated by miRNA-directed deadenylation of targeted mRNAs are three mechanisms of miRNA-guided gene regulation at the post-transcriptional levels. Many miRNAs are highly conserved in animals and plants, suggesting that they play an essential function in plants and animals. Lots of investigations indicate that miRNAs are involved in multiple biological processes, including stem cell differentiation, organ development, phase change, signaling, disease, cancer, and response to biotic and abiotic environmental stresses. This review provides a general background and current advance on the discovery, history, biogenesis, genomics, mechanisms, and functions of miRNAs.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 September 2017
                24 August 2017
                : 8
                : 44
                : 77360-77368
                Affiliations
                1 Department of Ophthalmology, School of Medicine, Shandong University, Jinan 250012, China
                2 Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
                3 College of Medicine, Qingdao University, Qingdao 266071, China
                Author notes
                Correspondence to: Yusen Huang, huang_yusen@ 123456126.com
                Article
                20483
                10.18632/oncotarget.20483
                5652784
                29100392
                15861170-dbcb-4132-80fd-2f08c8e646b3
                Copyright: © 2017 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 May 2017
                : 25 June 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                mir-30a,becn1,autophagy,diabetic cataract,lens epithelial cells
                Oncology & Radiotherapy
                mir-30a, becn1, autophagy, diabetic cataract, lens epithelial cells

                Comments

                Comment on this article