2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the Complexity of Intelligent Parks’ Internet of Things Big Data System

      1 , 2 , 1 , 1 , 1
      Complexity
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Today, intelligence in all walks of life is developing at an unexpectedly fast speed. The complexity of the Internet of Things (IoT) big data system of intelligent parks is analyzed to unify the information transmission of various industries, such as smart transportation, smart library, and smart medicine, thereby diminishing information islands. The traditional IoT systems are analyzed; on this basis, a relay node is added to the transmission path of the data information, and an intelligent park IoT big data system is constructed based on relay cooperation with a total of three hops. Finally, the IoT big data system is simulated and tested to verify its complexity. Results of energy efficiency analysis suggest that when the power dividing factor is 0.5, 0.1, and 0.9, the energy efficiency of the IoT big data system first increases and then decreases as α0 increases, where the maximum value appears when α0 is about 7 J. Results of outage probability analysis demonstrate that the system’s simulation result is basically the same as that of the theoretical result. Under the same environment, the more hop paths the system has, the more the number of relays is; moreover, the larger the fading index m, the better the system performance, and the lower the outage possibility. Results of transmission accuracy analysis reveal that the IoT big data system can provide a result that is the closest to the actual result when the successful data transmission probability is 100%, and the parameter λ values are between 0.01 and 0.05; in the meantime, the delay of successful data transmission is reduced gradually. In summary, the wireless relay cooperation transmission technology can reduce the outage probability and data transmission delay probability of the IoT big data system in the intelligent park by adding the multihop path, thereby improving the system performance. The above results can provide an experimental basis for exploring the complexity of IoT systems in intelligent parks.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Edge computing framework for enabling situation awareness in IoT based smart city

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus

            Currently, the integration of technologies such as the Internet of Things and big data seeks to cover the needs of an increasingly demanding society that consumes more resources. The massification of these technologies fosters the transformation of cities into smart cities. Smart cities improve the comfort of people in areas such as security, mobility, energy consumption and so forth. However, this transformation requires a high investment in both socioeconomic and technical resources. To make the most of the resources, it is important to make prototypes capable of simulating urban environments and for the results to set the standard for implementation in real environments. The search for an environment that represents the socioeconomic organization of a city led us to consider universities as a perfect environment for small-scale testing. The proposal integrates these technologies in a traditional university campus, mainly through the acquisition of data through the Internet of Things, the centralization of data in proprietary infrastructure and the use of big data for the management and analysis of data. The mechanisms of distributed and multilevel analysis proposed here could be a powerful starting point to find a reliable and efficient solution for the implementation of an intelligent environment based on sustainability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              A Review of Human Mobility Research Based on Big Data and Its Implication for Smart City Development

              Along with the increase of big data and the advancement of technologies, comprehensive data-driven knowledge of urban systems is becoming more attainable, yet the connection between big-data research and its application e.g., in smart city development, is not clearly articulated. Focusing on Human Mobility, one of the most frequently investigated applications of big data analytics, a framework for linking international academic research and city-level management policy was established and applied to the case of Hong Kong. Literature regarding human mobility research using big data are reviewed. These studies contribute to (1) discovering the spatial-temporal phenomenon, (2) identifying the difference in human behaviour or spatial attributes, (3) explaining the dynamic of mobility, and (4) applying to city management. Then, the application of the research to smart city development are scrutinised based on email queries to various governmental departments in Hong Kong. The identified challenges include data isolation, data unavailability, gaming between costs and quality of data, limited knowledge derived from rich data, as well as estrangement between public and private sectors. With further improvement in the practical value of data analytics and the utilization of data sourced from multiple sectors, paths to achieve smarter cities from policymaking perspectives are highlighted.
                Bookmark

                Author and article information

                Contributors
                Journal
                Complexity
                Complexity
                Hindawi Limited
                1099-0526
                1076-2787
                May 11 2021
                May 11 2021
                : 2021
                : 1-12
                Affiliations
                [1 ]Institute of Data Science, City University of Macau, Macau 999078, China
                [2 ]School of Architecture and Urban Planning, Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China
                Article
                10.1155/2021/5528135
                1590694a-fbb3-4471-9a73-f3d6a627f678
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article