7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thermal constraints on in vivo optogenetic manipulations

      research-article
      1 , 7 , 2 , 3 , 7 , 1 , 4 , 5 , 6 , 8
      Nature neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A key assumption of optogenetics is that light only affects opsin-expressing neurons. However, illumination invariably heats tissue, and many physiological processes are temperature-sensitive. Commonly-used illumination protocols increased temperature by 0.2–2°C and suppressed spiking in multiple brain regions. In striatum, light delivery activated an inwardly-rectifying potassium conductance and biased rotational behavior. Thus, careful consideration of light delivery parameters is required, as even modest intracranial heating can confound interpretation of optogenetic experiments.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          DeepLabCut: markerless pose estimation of user-defined body parts with deep learning

          Quantifying behavior is crucial for many applications in neuroscience. Videography provides easy methods for the observation and recording of animal behavior in diverse settings, yet extracting particular aspects of a behavior for further analysis can be highly time consuming. In motor control studies, humans or other animals are often marked with reflective markers to assist with computer-based tracking, but markers are intrusive, and the number and location of the markers must be determined a priori. Here we present an efficient method for markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results with minimal training data. We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. Remarkably, even when only a small number of frames are labeled (~200), the algorithm achieves excellent tracking performance on test frames that is comparable to human accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical interneurons that specialize in disinhibitory control

            In the mammalian cerebral cortex, the diversity of interneuronal subtypes underlies a division of labor subserving distinct modes of inhibitory control 1–7 . A unique mode of inhibitory control may be provided by inhibitory neurons that specifically suppress the firing of other inhibitory neurons. Such disinhibition could lead to the selective amplification of local processing and serve the important computational functions of gating and gain modulation 8,9 . Although several interneuron populations are known to target other interneurons to varying degrees 10–15 , little is known about interneurons specializing in disinhibition and their in vivo function. Here we show that a class of interneurons that express vasoactive intestinal polypeptide (VIP) mediates disinhibitory control in multiple areas of neocortex and is recruited by reinforcement signals. By combining optogenetic activation with single cell recordings, we examined the functional role of VIP interneurons in awake mice, and investigated the underlying circuit mechanisms in vitro in auditory and medial prefrontal cortices. We identified a basic disinhibitory circuit module in which activation of VIP interneurons transiently suppresses primarily somatostatin- and a fraction of parvalbumin-expressing inhibitory interneurons that specialize in the control of the input and output of principal cells, respectively 3,6,16,17 . During the performance of an auditory discrimination task, reinforcement signals (reward and punishment) strongly and uniformly activated VIP neurons in auditory cortex, and in turn VIP recruitment increased the gain of a functional subpopulation of principal neurons. These results reveal a specific cell-type and microcircuit underlying disinhibitory control in cortex and demonstrate that it is activated under specific behavioural conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation

              Channelrhodopsins are used to optogenetically depolarize neurons. We engineered a variant of channelrhodopsin, denoted Re d- a ctivatable Ch annel r hodopsin (ReaChR), that is optimally excited with orange to red light (λ ~ 590 to 630 nm) and offers improved membrane trafficking, higher photocurrents, and faster kinetics compared with existing red-shifted channelrhodopsins. Red light is more weakly scattered by tissue and absorbed less by blood than the blue to green wavelengths required by other channelrhodopsin variants. ReaChR expressed in vibrissa motor cortex was used to drive spiking and vibrissa motion in awake mice when excited with red light through intact skull. Precise vibrissa movements were evoked by expressing ReaChR in the facial motor nucleus in the brainstem and illuminating with red light through the external auditory canal. Thus, ReaChR enables transcranial optical activation of neurons in deep brain structures without the need to surgically thin the skull, form a transcranial window, or implant optical fibers.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                9 May 2019
                17 June 2019
                July 2019
                17 December 2019
                : 22
                : 7
                : 1061-1065
                Affiliations
                [1. ]Gladstone Institutes, San Francisco, CA 94158, USA
                [2. ]Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA.
                [3. ]Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
                [4. ]Department of Neurology, UCSF, San Francisco, CA 94158, USA
                [5. ]UCSF Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
                [6. ]Department of Physiology, UCSF, San Francisco, CA 94158, USA
                [7. ]These authors contributed equally to this work
                [8. ]Lead Contact
                Author notes

                AUTHOR CONTRIBUTIONS

                S.F.O., M.H.L and A.C.K. designed experiments, S.F.O. and M.H.L. performed experiments and analyzed data and all authors wrote the manuscript.

                Article
                NIHMS1528915
                10.1038/s41593-019-0422-3
                6592769
                31209378
                159554b0-8130-41c9-ba23-58bdba5964e0

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article