11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Non-coding RNA Structure and Function: Is There a Link?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA has emerged as the prime target for diagnostics, therapeutics and the development of personalized medicine. In particular, the non-coding RNAs (ncRNAs) that do not encode proteins, display remarkable biochemical versatility. They can fold into complex structures and interact with proteins, DNA and other RNAs, modulating the activity, DNA targets or partners of multiprotein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of epigenetic control that is dysregulated in disease. Intriguingly, for long non-coding RNAs (lncRNAs, >200 nucleotides length) structural conservation rather than nucleotide sequence conservation seems to be crucial for maintaining their function. LncRNAs tend to acquire complex secondary and tertiary structures and their functions only impose very subtle sequence constraints. In the present review we will discuss the biochemical assays that can be employed to determine the lncRNA structural configurations. The implications and challenges of linking function and lncRNA structure to design novel RNA therapeutic approaches will also be analyzed.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roles for microRNAs in conferring robustness to biological processes.

            Biological systems use a variety of mechanisms to maintain their functions in the face of environmental and genetic perturbations. Increasing evidence suggests that, among their roles as posttranscriptional repressors of gene expression, microRNAs (miRNAs) help to confer robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts, and they may in some network contexts help suppress random fluctuations in transcript copy number. These activities have important consequences for normal development and physiology, disease, and evolution. Here, we will discuss examples and principles of miRNAs that contribute to robustness in animal systems. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of lncRNA repertoires and expression patterns in tetrapods.

              Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                24 August 2018
                2018
                : 9
                : 1201
                Affiliations
                [1] 1King’s British Heart Foundation Centre, King’s College London , London, United Kingdom
                [2] 2Faculty of Science and Technology, Middlesex University , London, United Kingdom
                [3] 3Department of Informatics, King’s College London , London, United Kingdom
                Author notes

                Edited by: Vincenzo Lionetti, Scuola Sant’Anna di Studi Avanzati, Italy

                Reviewed by: Elena Guzzolino, Consorzio Pisa Ricerche, Italy; Amalia Forte, Università degli Studi della Campania Luigi Vanvitelli, Italy; Elisabetta Cervio, Cardiocentro Ticino, Switzerland

                *Correspondence: Anna Zampetaki, anna.zampetaki@ 123456kcl.ac.uk

                This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01201
                6117379
                30197605
                15974b04-f597-43c9-8a05-3d446d984540
                Copyright © 2018 Zampetaki, Albrecht and Steinhofel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 June 2018
                : 10 August 2018
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 91, Pages: 8, Words: 0
                Funding
                Funded by: British Heart Foundation 10.13039/501100000274
                Award ID: FS/13/18/30207
                Categories
                Physiology
                Mini Review

                Anatomy & Physiology
                non-coding rna,lncrna,rna structure,gene editing,cardiovascular diseases
                Anatomy & Physiology
                non-coding rna, lncrna, rna structure, gene editing, cardiovascular diseases

                Comments

                Comment on this article