6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review

      ,
      Environmental Chemistry and Ecotoxicology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Nanoparticles: Properties, applications and toxicities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strain specificity in antimicrobial activity of silver and copper nanoparticles.

            The antimicrobial properties of silver and copper nanoparticles were investigated using Escherichia coli (four strains), Bacillus subtilis and Staphylococcus aureus (three strains). The average sizes of the silver and copper nanoparticles were 3 nm and 9 nm, respectively, as determined through transmission electron microscopy. Energy-dispersive X-ray spectra of silver and copper nanoparticles revealed that while silver was in its pure form, an oxide layer existed on the copper nanoparticles. The bactericidal effect of silver and copper nanoparticles were compared based on diameter of inhibition zone in disk diffusion tests and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of nanoparticles dispersed in batch cultures. Bacterial sensitivity to nanoparticles was found to vary depending on the microbial species. Disk diffusion studies with E. coli and S. aureus revealed greater effectiveness of the silver nanoparticles compared to the copper nanoparticles. B. subtilis depicted the highest sensitivity to nanoparticles compared to the other strains and was more adversely affected by the copper nanoparticles. Good correlation was observed between MIC and MBC (r2=0.98) measured in liquid cultures. For copper nanoparticles a good negative correlation was observed between the inhibition zone observed in disk diffusion test and MIC/MBC determined based on liquid cultures with the various strains (r2=-0.75). Although strain-specific variation in MIC/MBC was negligible for S. aureus, some strain-specific variation was observed for E. coli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release.

                Bookmark

                Author and article information

                Journal
                Environmental Chemistry and Ecotoxicology
                Environmental Chemistry and Ecotoxicology
                Elsevier BV
                25901826
                2021
                2021
                : 3
                : 59-75
                Article
                10.1016/j.enceco.2020.12.001
                159ebab8-7fa1-4687-8ec8-bfef67ac6f00
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article