33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Memory consolidation is a dynamic process. Reactivation of consolidated memories by a reminder triggers reconsolidation, a time-limited period during which existing memories can be modified (i.e., weakened or strengthened). Episodic memory refers to our ability to recall specific past events about what happened, including where and when. Difficulties in this form of long-term memory commonly occur in healthy aging. Because episodic memory is critical for daily life functioning, the development of effective interventions to reduce memory loss in elderly individuals is of great importance. Previous studies in young adults showed that the dorsolateral prefrontal cortex (DLPFC) plays a causal role in strengthening of verbal episodic memories through reconsolidation. The aim of the present study was to explore the extent to which facilitatory transcranial direct current stimulation (anodal tDCS) over the left DLPFC would strengthen existing episodic memories through reconsolidation in elderly individuals. On Day 1, older adults learned a list of 20 words. On Day 2 (24 h later), they received a reminder or not, and after 10 min tDCS was applied over the left DLPFC. Memory recall was tested on Day 3 (48 h later) and Day 30 (1 month later). Surprisingly, anodal tDCS over the left DLPFC (i.e., with or without the reminder) strengthened existing verbal episodic memories and reduced forgetting compared to sham stimulation. These results provide a framework for testing the hypothesis that facilitatory tDCS of left DLPFC might strengthen existing episodic memories and reduce memory loss in older adults with amnestic mild cognitive impairment.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Memory--a century of consolidation.

            J McGaugh (2000)
            The memory consolidation hypothesis proposed 100 years ago by Müller and Pilzecker continues to guide memory research. The hypothesis that new memories consolidate slowly over time has stimulated studies revealing the hormonal and neural influences regulating memory consolidation, as well as molecular and cellular mechanisms. This review examines the progress made over the century in understanding the time-dependent processes that create our lasting memories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients.

              Cortical excitability changes induced by tDCS and revealed by TMS, are increasingly being used as an index of neuronal plasticity in the human cortex. The aim of this paper is to summarize the partially adverse effects of 567 tDCS sessions over motor and non-motor cortical areas (occipital, temporal, parietal) from the last 2 years, on work performed in our laboratories. One-hundred and two of our subjects who participated in our tDCS studies completed a questionnaire. The questionnaire contained rating scales regarding the presence and severity of headache, difficulties in concentrating, acute mood changes, visual perceptual changes and any discomforting sensation like pain, tingling, itching or burning under the electrodes, during and after tDCS. Participants were healthy subjects (75.5%), migraine patients (8.8%), post-stroke patients (5.9%) and tinnitus patients (9.8%). During tDCS a mild tingling sensation was the most common reported adverse effect (70.6%), moderate fatigue was felt by 35.3% of the subjects, whereas a light itching sensation under the stimulation electrodes occurred in 30.4% of cases. After tDCS headache (11.8%), nausea (2.9%) and insomnia (0.98%) were reported, but fairly infrequently. In addition, the incidence of the itching sensation (p=0.02) and the intensity of tingling sensation (p=0.02) were significantly higher during tDCS in the group of the healthy subjects, in comparison to patients; whereas the occurrence of headache was significantly higher in the patient group (p=0.03) after the stimulation. Our results suggest that tDCS applied to motor and non-motor areas according to the present tDCS safety guidelines, is associated with relatively minor adverse effects in healthy humans and patients with varying neurological disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                20 October 2014
                2014
                : 6
                : 289
                Affiliations
                [1] 1Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
                [2] 2Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
                [3] 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
                Author notes

                Edited by: David Bartrés-Faz, University of Barcelona, Spain

                Reviewed by: Amir Homayoun Javadi, University College London, UK; Robert Blumenfeld, University of California, Irvine, USA

                *Correspondence: Marco Sandrini, Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D52, Bethesda, MD 20892, USA e-mail: marco.sandrini@ 123456nih.gov

                This article was submitted to the journal Frontiers in Aging Neuroscience.

                Article
                10.3389/fnagi.2014.00289
                4202785
                25368577
                15b146de-6be5-4559-90a7-386f5a087274
                Copyright © 2014 Sandrini, Brambilla, Manenti, Rosini, Cohen and Cotelli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2014
                : 30 September 2014
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 83, Pages: 9, Words: 7956
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                tdcs,aging,reconsolidation,episodic memory,prefrontal cortex,memory,enhancement,forgetting
                Neurosciences
                tdcs, aging, reconsolidation, episodic memory, prefrontal cortex, memory, enhancement, forgetting

                Comments

                Comment on this article