38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A complete understanding of the molecular mechanisms underlying the functioning of large, multiprotein complexes requires experimental tools capable of simultaneously visualizing molecular architecture and enzymatic activity in real time. We developed a novel single-molecule assay that combines the flow-stretching of individual DNA molecules to measure the activity of the DNA-replication machinery with the visualization of fluorescently labeled DNA polymerases at the replication fork. By correlating polymerase stoichiometry with DNA synthesis of T7 bacteriophage replisomes, we are able to quantitatively describe the mechanism of polymerase exchange. We find that even at relatively modest polymerase concentration (∼2 nM), soluble polymerases are recruited to an actively synthesizing replisome, dramatically increasing local polymerase concentration. These excess polymerases remain passively associated with the replisome through electrostatic interactions with the T7 helicase for ∼50 s until a stochastic and transient dissociation of the synthesizing polymerase from the primer-template allows for a polymerase exchange event to occur.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Single-molecule studies of the effect of template tension on T7 DNA polymerase activity.

          T7 DNA polymerase catalyses DNA replication in vitro at rates of more than 100 bases per second and has a 3'-->5' exonuclease (nucleotide removing) activity at a separate active site. This enzyme possesses a 'right hand' shape which is common to most polymerases with fingers, palm and thumb domains. The rate-limiting step for replication is thought to involve a conformational change between an 'open fingers' state in which the active site samples nucleotides, and a 'closed' state in which nucleotide incorporation occurs. DNA polymerase must function as a molecular motor converting chemical energy into mechanical force as it moves over the template. Here we show, using a single-molecule assay based on the differential elasticity of single-stranded and double-stranded DNA, that mechanical force is generated during the rate-limiting step and that the motor can work against a maximum template tension of approximately 34 pN. Estimates of the mechanical and entropic work done by the enzyme show that T7 DNA polymerase organizes two template bases in the polymerization site during each catalytic cycle. We also find a force-induced 100-fold increase in exonucleolysis above 40 pN.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Replication fork reactivation downstream of a blocked nascent leading strand.

            Unrepaired lesions in the DNA template pose a threat to accurate replication. Several pathways exist in Escherichia coli to reactivate a blocked replication fork. The process of recombination-dependent restart of broken forks is well understood, but the consequence of replication through strand-specific lesions is less well known. Here we show that replication can be restarted and leading-strand synthesis re-initiated downstream of an unrepaired block to leading-strand progression, even when the 3'-OH of the nascent leading strand is unavailable. We demonstrate that the loading by a replication restart system of a single hexamer of the replication fork helicase, DnaB, on the lagging-strand template is sufficient to coordinate priming by the DnaG primase of both the leading and lagging strands. These observations provide a mechanism for damage bypass during fork reactivation, demonstrate how daughter-strand gaps are generated opposite leading-strand lesions during the replication of ultraviolet-light-irradiated DNA, and help to explain the remarkable speed at which even a heavily damaged DNA template is replicated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction.

              Despite the recent advances in single-molecule manipulation techniques, purely mechanical approaches cannot detect subtle conformational changes in the biologically important regime of weak forces. We developed a hybrid scheme combining force and fluorescence that allowed us to examine the effect of subpiconewton forces on the nanometer scale motion of the Holliday junction (HJ) at 100-hertz bandwidth. The HJ is an exquisitely sensitive force sensor whose force response is amplified with an increase in its arm lengths, demonstrating a lever-arm effect at the nanometer-length scale. Mechanical interrogation of the HJ in three different directions helped elucidate the structures of the transient species populated during its conformational changes. This method of mapping two-dimensional reaction landscapes at low forces is readily applicable to other nucleic acid systems and their interactions with proteins and enzymes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 01 2011
                March 01 2011
                March 01 2011
                January 18 2011
                : 108
                : 9
                : 3584-3589
                Article
                10.1073/pnas.1018824108
                3048139
                21245349
                15b1f147-1c32-4f87-8184-2e95a8dcb829
                © 2011
                History

                Comments

                Comment on this article