4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutated p53 Promotes the Symmetric Self-Renewal of Cisplatin-Resistant Lung Cancer Stem-Like Cells and Inhibits the Recruitment of Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been proposed that mutant p53 is correlated with the recurrence of lung cancer. Recently, a small population of cells with asymmetric or symmetric self-renewal potential has been identified in lung cancer, which was termed as cancer stem-like cells (CSCs) and was speculated to be the reason for cancer recurrence after chemotherapy. In this study, we used lung cancer cell lines with different TP53 backgrounds to elucidate the potential role of mutant p53 in regulating lung CSC self-renewal and on lung cancer recurrence. Cisplatin-resistant lung cancer cells with different TP53 backgrounds were generated in vitro by exposing A549, H460, and H661 lung cancer cell lines repeatedly to cisplatin. CD44 +/CD90 + stem-like cells were identified in above cisplatin-resistant lung cancers (termed as cisplatin-resistant lung cancer stem-like cells, (Cr-LCSCs)) and stained with PKH26 dye which was used to define the self-renewal pattern. The proportion of symmetric divisions was significantly higher in Cr-LCSCs with mutant (mt) p53 compared with Cr-LCSCs with wild-type (wt) p53, and forced expression of mt p53 promoted the symmetric division of Cr-LCSCs. Furthermore, fewer macrophages accumulated in subcutaneously implanted xenografts consisting of mt p53 Cr-LCSCs compared with wt p53 Cr-LCSCs. These results indicated that mt p53 might accelerate the recurrence of lung cancer by regulating the self-renewal kinetics of Cr-LCSCs as well as the recruitment of macrophages.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Asymmetric and symmetric stem-cell divisions in development and cancer.

          Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The epidemiology of lung cancer.

            The incidence and mortality from lung cancer is decreasing in the US due to decades of public education and tobacco control policies, but are increasing elsewhere in the world related to the commencement of the tobacco epidemic in various countries and populations in the developing world. Individual cigarette smoking is by far the most common risk factor for lung carcinoma; other risks include passive smoke inhalation, residential radon, occupational exposures, infection and genetic susceptibility. The predominant disease burden currently falls on minority populations and socioeconomically disadvantaged people. In the US, the recent legalization of marijuana for recreational use in many states and the rapid growth of commercially available electronic nicotine delivery systems (ENDS) present challenges to public health for which little short term and no long term safety data is available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells.

              Stem-like cells may be integral to the development and maintenance of human cancers. Direct proof is still lacking, mainly because of our poor understanding of the biological differences between normal and cancer stem cells (SCs). Using the ErbB2 transgenic model of breast cancer, we found that self-renewing divisions of cancer SCs are more frequent than their normal counterparts, unlimited and symmetric, thus contributing to increasing numbers of SCs in tumoral tissues. SCs with targeted mutation of the tumor suppressor p53 possess the same self-renewal properties as cancer SCs, and their number increases progressively in the p53 null premalignant mammary gland. Pharmacological reactivation of p53 correlates with restoration of asymmetric divisions in cancer SCs and tumor growth reduction, without significant effects on additional cancer cells. These data demonstrate that p53 regulates polarity of cell division in mammary SCs and suggest that loss of p53 favors symmetric divisions of cancer SCs, contributing to tumor growth.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Immunol Res
                J Immunol Res
                JIR
                Journal of Immunology Research
                Hindawi
                2314-8861
                2314-7156
                2019
                31 October 2019
                : 2019
                : 7478538
                Affiliations
                1Department of Respiratory and Critical Care Medicine, Xinqiao Hospital, The Army Medical University, Chongqing, China
                2Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
                Author notes

                Guest Editor: Kong Chen

                Author information
                https://orcid.org/0000-0002-5184-0777
                https://orcid.org/0000-0002-6835-7597
                Article
                10.1155/2019/7478538
                6875234
                31781681
                15b23a76-0341-4191-b3f4-91d8b1859f33
                Copyright © 2019 Yu Xu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 May 2019
                : 12 October 2019
                Funding
                Funded by: Natural Science Foundation of Chongqing
                Award ID: cstc2016jcyjA0578
                Funded by: National Natural Science Foundation of China
                Award ID: 81201684
                Categories
                Research Article

                Comments

                Comment on this article