8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico.

      Annals of Botany

      Acacia, ultrastructure, Animals, Ants, Apocynaceae, Bidens, cytology, Bignoniaceae, Callicarpa, Carbohydrates, secretion, Cedrela, Combretaceae, Cordia, Fabaceae, Ipomoea, Mexico, Opuntia, Plant Components, Aerial, physiology, Plant Epidermis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Morphological descriptions of the extrafloral nectaries (EFNs) of certain plant species are common in the literature, but they rarely relate morphology with histology, gland distribution and secretory attributes. In this study a morphological/secretory characterization of EFNs occurring on several plant species in a tropical coastal community is made and the implications of gland attributes discussed from a functional perspective. The morphology and nectar secretion of the EFNs of 20 plant species are characterized through scanning electron microscopy, histochemical detection of reducing sugars (Fehling's reagent) and nectar volume/concentration estimates. Sixty-five per cent of plant species in coastal communities had EFNs on vegetative structures and 35 % of species had glands on reproductive and vegetative organs. The Fabaceae is the plant family with the most species with EFNs and most diversity of gland morphologies. Four types of vascularized nectaries and four of glandular trichomes are described; sugar-secreting trichomes are characterized using Fehling's technique, and the first descriptions of unicellular and peltate trichomes functioning as EFNs are provided. Glands of ten plant species and six genera are described for the first time. Four plant species possess more than one morphological type of EFN. Eleven species have EFNs in more than one location or organ. More complex glands secrete more nectar, but are functionally homologous to the aggregations of numerous secretory trichomes on specific and valuable plant organs. Important diversity of EFN morphology was foundin the coastal plant community studied. Both vascularized and non-vascularized EFNs are observed in plants and, for the latter, previously non-existent morpho-secretory characterizations are provided with a methodological approach to study them. It is recommended that studies relating EFN attributes (i.e. morphology, distribution) with their differential visitation by insects (i.e. ants) and the cost of maintenance to the plants are carried out to understand the evolution of these glands.

          Related collections

          Author and article information

          Journal
          16227307
          4247069
          10.1093/aob/mci270

          Comments

          Comment on this article