33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron within 6 hours, and was accompanied by significant increases in osseous Fgf23 mRNA expression and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 mRNA and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wild-type and Col4a3 KO mice with CKD, but markedly increased intact FGF23 levels only in the CKD mice. Inflammation increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in CKD.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease.

          Fibroblast growth factor 23 (FGF23) regulates phosphorus metabolism and is a strong predictor of mortality in dialysis patients. FGF23 is thought to be an early biomarker of disordered phosphorus metabolism in the initial stages of chronic kidney disease (CKD). We measured FGF23 in baseline samples from 3879 patients in the Chronic Renal Insufficiency Cohort study, which is a diverse cohort of patients with CKD stage 2-4. Mean serum phosphate and median parathyroid hormone (PTH) levels were in the normal range, but median FGF23 was markedly greater than in healthy populations, and increased significantly with decreasing estimated glomerular filtration rate (eGFR). High levels of FGF23, defined as being above 100 RU/ml, were more common than secondary hyperparathyroidism and hyperphosphatemia in all strata of eGFR. The threshold of eGFR at which the slope of FGF23 increased was significantly higher than the corresponding threshold for PTH based on non-overlapping 95% confidence intervals. Thus, increased FGF23 is a common manifestation of CKD that develops earlier than increased phosphate or PTH. Hence, FGF23 measurements may be a sensitive early biomarker of disordered phosphorus metabolism in patients with CKD and normal serum phosphate levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of anemia in CKD.

            Anemia is a common feature of CKD associated with poor outcomes. The current management of patients with anemia in CKD is controversial, with recent clinical trials demonstrating increased morbidity and mortality related to erythropoiesis stimulating agents. Here, we examine recent insights into the molecular mechanisms underlying anemia of CKD. These insights hold promise for the development of new diagnostic tests and therapies that directly target the pathophysiologic processes underlying this form of anemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism.

              The osteocyte, a terminally differentiated cell comprising 90%-95% of all bone cells, may have multiple functions, including acting as a mechanosensor in bone (re)modeling. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes and, when deleted in mice, results in a hypomineralized bone phenotype. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (P(i)) homeostasis. Both Dmp1-null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism.
                Bookmark

                Author and article information

                Journal
                0323470
                5428
                Kidney Int
                Kidney Int.
                Kidney international
                0085-2538
                1523-1755
                11 September 2015
                04 January 2016
                January 2016
                04 July 2016
                : 89
                : 1
                : 135-146
                Affiliations
                [1 ]From Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
                [2 ]From Nephrology Division, Program in Membrane Biology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
                Author notes
                Correspondence should be addressed to Valentin David, PhD, Northwestern University Feinberg School of Medicine, Division of Nephrology and Hypertension & Center for Translational Metabolism and Health, 320 East Superior Street, Searle Building, Suite 10-517, Chicago IL 60611. valentin.david@ 123456northwestern.edu
                Article
                NIHMS718417
                10.1038/ki.2015.290
                4854810
                26535997
                15c73d3b-354a-4e62-9e6d-91a341c44539

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Nephrology
                fgf23,inflammation,anemia,bone,mineral metabolism,hypoxia
                Nephrology
                fgf23, inflammation, anemia, bone, mineral metabolism, hypoxia

                Comments

                Comment on this article