5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal Dynamics of Endogenous Bacterial Composition in Rice Seeds During Maturation and Storage, and Spatial Dynamics of the Bacteria During Seedling Growth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seed endophytes are of interest because they are believed to affect seed quality, and ultimately, plant growth and fitness. A comprehensive understanding of the assembly of the seed microbiome during seed development and maturation, the fate of microbes during storage, and the migration of microbes during seedling growth are still lacking. In this study, to understand the assembly and fate of endogenous bacteria in rice seeds from the ripening stage to the storage and seedling stages, we employed culture-dependent and metagenomic analyses. Bacterial communities in rice seeds were composed of a few dominant taxa that were introduced at the milky and dough stages, and they persisted during seed maturation. The culturable bacterial population gradually increased during the ripening stage, whereas there was a gradual decrease during storage. Bacteria that persisted during storage proliferated after imbibition and were distributed and established in the shoots and roots of rice seedlings. The storage temperature influenced the abundance of bacteria, which consequently changed the bacterial composition in the shoots and roots of seedlings. Pantoea, Pseudomonas, and Allorhizobium were consistently abundant from seed development to the germination stage. Some endogenous bacterial strains significantly promoted the growth of Arabidopsis and rice plants. Overall, our results indicate that rice seeds are colonized by a few bacterial taxa during seed development, and their relative abundance fluctuates during storage and contributes significantly to the establishment of endophytes in the stems and roots of rice plants. The selected bacterial isolates can be used to improve the growth and health of rice plants. To the best of our knowledge, this is the first study to reveal the dynamics of bacterial populations during storage of rice seeds at different temperatures. The temporal dynamics of the bacterial community during seed storage provide clues for the manipulation of endogenous bacteria in rice plants.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UCHIME improves sensitivity and speed of chimera detection

          Motivation: Chimeric DNA sequences often form during polymerase chain reaction amplification, especially when sequencing single regions (e.g. 16S rRNA or fungal Internal Transcribed Spacer) to assess diversity or compare populations. Undetected chimeras may be misinterpreted as novel species, causing inflated estimates of diversity and spurious inferences of differences between populations. Detection and removal of chimeras is therefore of critical importance in such experiments. Results: We describe UCHIME, a new program that detects chimeric sequences with two or more segments. UCHIME either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences. In testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus. UCHIME is >100× faster than Perseus and >1000× faster than ChimeraSlayer. Contact: robert@drive5.com Availability: Source, binaries and data: http://drive5.com/uchime. Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            VSEARCH: a versatile open source tool for metagenomics

            Background VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-bit version is freely available for academic use. Methods When searching nucleotide sequences, VSEARCH uses a fast heuristic based on words shared by the query and target sequences in order to quickly identify similar sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs optimal global sequence alignment of the query against potential target sequences, using full dynamic programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments are computed in parallel using vectorisation and multiple threads. Results VSEARCH includes most commands for analysing nucleotide sequences available in USEARCH version 7 and several of those available in USEARCH version 8, including searching (exact or based on global alignment), clustering by similarity (using length pre-sorting, abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo), dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and subsampling. VSEARCH also includes commands for FASTQ file processing, i.e., format detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH extends functionality with several new commands and improvements, including shuffling, rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling, while on a par with USEARCH for paired-ends read merging. VSEARCH is slower than USEARCH when performing clustering and chimera detection, but significantly faster when performing paired-end reads merging and dereplication. VSEARCH is available at https://github.com/torognes/vsearch under either the BSD 2-clause license or the GNU General Public License version 3.0. Discussion VSEARCH has been shown to be a fast, accurate and full-fledged alternative to USEARCH. A free and open-source versatile tool for sequence analysis is now available to the metagenomics community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.

              In 2001 and 2002, we published two papers (Bioinformatics, 17, 282-283, Bioinformatics, 18, 77-82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 July 2022
                2022
                : 13
                : 877781
                Affiliations
                [1] 1Division of Biotechnology, Jeonbuk National University , Jeonju, South Korea
                [2] 2Crop Foundation Research Division, National Institute of Crop Science , Wanju-gun, South Korea
                [3] 3Plant Medical Research Center, Advanced Institute of Environment and Bioscience, Institute of Bio-Industry, Jeonbuk National University , Jeonju, South Korea
                Author notes

                Edited by: Martin Filion, Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Canada

                Reviewed by: David Johnston-Monje, University of Valle, Colombia; Roberta Fulthorpe, University of Toronto Scarborough, Canada

                *Correspondence: Yong Hoon Lee, yonghoonlee@ 123456jbnu.ac.kr

                This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.877781
                9355576
                35935216
                15d4dab4-5497-4b3d-9182-22f40cc236eb
                Copyright © 2022 Dutta, Choi and Lee.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 February 2022
                : 10 June 2022
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 72, Pages: 15, Words: 11197
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                endophyte,microbiome,pgpr,seed,temporal dynamics
                Microbiology & Virology
                endophyte, microbiome, pgpr, seed, temporal dynamics

                Comments

                Comment on this article