492
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The missing memristor found

      , , ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3.

          The great variability in the electrical properties of multinary oxide materials, ranging from insulating, through semiconducting to metallic behaviour, has given rise to the idea of modulating the electronic properties on a nanometre scale for high-density electronic memory devices. A particularly promising aspect seems to be the ability of perovskites to provide bistable switching of the conductance between non-metallic and metallic behaviour by the application of an appropriate electric field. Here we demonstrate that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO(3). The phenomenon is shown to originate from local modulations of the oxygen content and to be related to the self-doping capability of the early transition metal oxides. Our results show that extended defects, such as dislocations, can act as bistable nanowires and hold technological promise for terabit memory devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reproducible switching effect in thin oxide films for memory applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantized conductance atomic switch.

              A large variety of nanometre-scale devices have been investigated in recent years that could overcome the physical and economic limitations of current semiconductor devices. To be of technological interest, the energy consumption and fabrication cost of these 'nanodevices' need to be low. Here we report a new type of nanodevice, a quantized conductance atomic switch (QCAS), which satisfies these requirements. The QCAS works by controlling the formation and annihilation of an atomic bridge at the crossing point between two electrodes. The wires are spaced approximately 1 nm apart, and one of the two is a solid electrolyte wire from which the atomic bridges are formed. We demonstrate that such a QCAS can switch between 'on' and 'off' states at room temperature and in air at a frequency of 1 MHz and at a small operating voltage (600 mV). Basic logic circuits are also easily fabricated by crossing solid electrolyte wires with metal electrodes.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                May 2008
                May 2008
                : 453
                : 7191
                : 80-83
                Article
                10.1038/nature06932
                18451858
                15d5fba3-1545-451d-90ce-5522d73ec3e7
                © 2008

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article