Blog
About

439
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The missing memristor found

      , , ,

      Nature

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoionics-based resistive switching memories.

          Many metal-insulator-metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Memristor-The missing circuit element

             L P Chua (1971)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3.

              The great variability in the electrical properties of multinary oxide materials, ranging from insulating, through semiconducting to metallic behaviour, has given rise to the idea of modulating the electronic properties on a nanometre scale for high-density electronic memory devices. A particularly promising aspect seems to be the ability of perovskites to provide bistable switching of the conductance between non-metallic and metallic behaviour by the application of an appropriate electric field. Here we demonstrate that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO(3). The phenomenon is shown to originate from local modulations of the oxygen content and to be related to the self-doping capability of the early transition metal oxides. Our results show that extended defects, such as dislocations, can act as bistable nanowires and hold technological promise for terabit memory devices.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                May 2008
                May 2008
                : 453
                : 7191
                : 80-83
                Article
                10.1038/nature06932
                18451858
                © 2008

                http://www.springer.com/tdm

                Comments

                Comment on this article