9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals.

      Cell Calcium
      Aniline Compounds, Benzofurans, Calcium, metabolism, Calcium Signaling, Calibration, Cell Compartmentation, Cell Nucleus, Cytosol, Fluorescent Dyes, HeLa Cells, Humans, Imidazoles, Organic Chemicals, Xanthenes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantifying the magnitude of Ca2+ signals from changes in the emission of fluorescent indicators relies on assumptions about the indicator behaviour in situ. Factors such as osmolarity, pH, ionic strength and protein environment can affect indicator properties making it advantageous to calibrate indicators within the required cellular or subcellular environment. Selecting Ca2+ indicators appropriate for a particular application depends upon several considerations including Ca2+ binding affinity, dynamic range and ease of loading. These factors are usually best determined empirically. This study describes the in-situ calibration of a number of frequently used fluorescent Ca2+ indicators (Fluo-3, Fluo-4, Calcium Green-1, Calcium Orange, Oregon Green 488 BAPTA-1 and Fura-Red) and their use in reporting low- and high-amplitude Ca2+ signals in HeLa cells. All Ca2+ indicators exhibited lower in-situ Ca2+ binding affinities than suggested by previously published in-vitro determinations. Furthermore, for some of the indicators, there were significant differences in the apparent Ca2+ binding affinities between nuclear and cytoplasmic compartments. Variation between indicators was also found in their dynamic ranges, compartmentalization, leakage and photostability. Overall, Fluo-3 proved to be the generally most applicable Ca2+ indicator, since it displayed a large dynamic range, low compartmentalization and an appropriate apparent Ca2+ binding affinity. However, it was more susceptible to photobleaching than many of the other Ca2+ indicators.

          Related collections

          Author and article information

          Comments

          Comment on this article