Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET ( http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A global reference for human genetic variation

       Lachlan Coin (2016)
      The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        dbSNP: the NCBI database of genetic variation.

        In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K. Sirotkin (1999) Genome Res., 9, 677-679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found

          UniProt: a hub for protein information

          UniProt is an important collection of protein sequences and their annotations, which has doubled in size to 80 million sequences during the past year. This growth in sequences has prompted an extension of UniProt accession number space from 6 to 10 characters. An increasing fraction of new sequences are identical to a sequence that already exists in the database with the majority of sequences coming from genome sequencing projects. We have created a new proteome identifier that uniquely identifies a particular assembly of a species and strain or subspecies to help users track the provenance of sequences. We present a new website that has been designed using a user-experience design process. We have introduced an annotation score for all entries in UniProt to represent the relative amount of knowledge known about each protein. These scores will be helpful in identifying which proteins are the best characterized and most informative for comparative analysis. All UniProt data is provided freely and is available on the web at http://www.uniprot.org/.
            Bookmark

            Author and article information

            Affiliations
            Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), C/Dr Aiguader 88, E-08003 Barcelona, Spain
            Author notes
            [* ]To whom correspondence should be addressed. Tel: +34 93 316 0521; Fax: +34 93 316 0550; Email: laura.furlong@ 123456upf.edu
            Journal
            Nucleic Acids Res
            Nucleic Acids Res
            nar
            nar
            Nucleic Acids Research
            Oxford University Press
            0305-1048
            1362-4962
            04 January 2017
            19 October 2016
            19 October 2016
            : 45
            : Database issue , Database issue
            : D833-D839
            27924018 5210640 10.1093/nar/gkw943
            © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

            Counts
            Pages: 7
            Product
            Categories
            Database Issue
            Custom metadata
            04 January 2017

            Genetics

            Comments

            Comment on this article