30
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isotopic dietary studies of early hominins have hitherto been confined to specimens from South Africa. We are now able to report isotopic analyses of two species of early hominins from Tanzania: Homo habilis and Australopithecus boisei. The results show that these two species had very different diets. The isotopic analyses of three South African species of early hominins, in contrast, show considerable variation in individual diets, but no marked differences between species.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Isotopic evidence for dietary variability in the early hominin Paranthropus robustus.

          Traditional methods of dietary reconstruction do not allow the investigation of dietary variability within the lifetimes of individual hominins. However, laser ablation stable isotope analysis reveals that the delta13C values of Paranthropus robustus individuals often changed seasonally and interannually. These data suggest that Paranthropus was not a dietary specialist and that by about 1.8 million years ago, savanna-based foods such as grasses or sedges or animals eating these foods made up an important but highly variable part of its diet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Late Pliocene Homo and hominid land use from Western Olduvai Gorge, Tanzania.

            Excavation in the previously little-explored western portion of Olduvai Gorge indicates that hominid land use of the eastern paleobasin extended at least episodically to the west. Finds included a dentally complete Homo maxilla (OH 65) with lower face, Oldowan stone artifacts, and butchery-marked bones dated to be between 1.84 and 1.79 million years old. The hominid shows strong affinities to the KNM ER 1470 cranium from Kenya (Homo rudolfensis), a morphotype previously unrecognized at Olduvai. ER 1470 and OH 65 can be accommodated in the H. habilis holotype, casting doubt on H. rudolfensis as a biologically valid taxon.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dental topography and diets of Australopithecus afarensis and early Homo.

              Diet is key to understanding the paleoecology of early hominins. We know little about the diets of these fossil taxa, however, in part because of a limited fossil record, and in part because of limitations in methods available to infer their feeding adaptations. This paper applies a new method, dental topographic analysis, to the inference of diet from fossil hominin teeth. This approach uses laser scanning to generate digital 3D models of teeth and geographic information systems software to measure surface attributes, such as slope and occlusal relief. Because it does not rely on specific landmarks that change with wear, dental topographic analysis allows measurement and comparison of variably worn teeth, greatly increasing sample sizes compared with techniques that require unworn teeth. This study involved comparison of occlusal slope and relief of the lower second molars of Australopithecus afarensis (n=15) and early Homo (n=8) with those of Gorilla gorilla gorilla (n=47) and Pan troglodytes troglodytes (n=54). Results indicate that while all groups show reduced slope and relief in progressively more worn specimens, there are consistent differences at given wear stages among the taxa. Early Homo shows steeper slopes and more relief than chimpanzees, whereas A. afarensis shows less slope and relief than any of the other groups. The differences between the two hominin taxa are on the same order as those between the extant apes, suggesting similar degrees of difference in diet. Because these chimpanzees and gorillas differ mostly in fallback foods where they are sympatric, results suggest that the early hominins may likewise have differed mostly in fallback foods, with A. afarensis emphasizing harder, more brittle foods, and early Homo relying on tougher, more elastic foods.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                sajs
                South African Journal of Science
                S. Afr. j. sci.
                Academy of Science of South Africa (Pretoria )
                1996-7489
                April 2008
                : 104
                : 3-4
                : 153-155
                Affiliations
                [1 ] University of Cape Town South Africa
                [2 ] University of Dar es Salaam Tanzania
                [3 ] University of Witwatersrand South Africa
                Article
                S0038-23532008000200016
                15ed43d3-2356-4f83-93ac-daa3f5fa36ab

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO South Africa

                Self URI (journal page): http://www.scielo.org.za/scielo.php?script=sci_serial&pid=0038-2353&lng=en
                Categories
                Biology
                Humanities, Multidisciplinary

                General life sciences
                General life sciences

                Comments

                Comment on this article