119
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prolonged Influenza Virus Shedding and Emergence of Antiviral Resistance in Immunocompromised Patients and Ferrets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunocompromised individuals tend to suffer from influenza longer with more serious complications than otherwise healthy patients. Little is known about the impact of prolonged infection and the efficacy of antiviral therapy in these patients. Among all 189 influenza A virus infected immunocompromised patients admitted to ErasmusMC, 71 were hospitalized, since the start of the 2009 H1N1 pandemic. We identified 11 (15%) cases with prolonged 2009 pandemic virus replication (longer than 14 days), despite antiviral therapy. In 5 out of these 11 (45%) cases oseltamivir resistant H275Y viruses emerged. Given the inherent difficulties in studying antiviral efficacy in immunocompromised patients, we have infected immunocompromised ferrets with either wild-type, or oseltamivir-resistant (H275Y) 2009 pandemic virus. All ferrets showed prolonged virus shedding. In wild-type virus infected animals treated with oseltamivir, H275Y resistant variants emerged within a week after infection. Unexpectedly, oseltamivir therapy still proved to be partially protective in animals infected with resistant virus. Immunocompromised ferrets offer an attractive alternative to study efficacy of novel antiviral therapies.

          Author Summary

          Immunocompromised patients, such as transplant recipients on immune suppressive therapy, are a substantial and gradually expanding patient group. Upon influenza virus infection, these patients clear the virus less efficiently and are more likely to develop severe pneumonia than immunocompetent individuals. Existing antiviral strategies are far from satisfactory for this patient group, as they show limited effectiveness with frequent emergence of antiviral resistance. For ethical and practical reasons antiviral efficacy studies are hard to conduct in these patients. Therefore, we developed an immunocompromised ferret, mimicking an immune suppressive regimen used for solid organ transplant recipients. Upon infection with 2009 pandemic influenza A/H1N1 virus these animals, like immunocompromised patients, develop severe respiratory disease with prolonged virus excretion. Interestingly, all immunocompromised ferrets on oseltamivir therapy excreted oseltamivir resistant viruses (H275Y) within one week after start of treatment. Furthermore, high dose oseltamivir therapy still proved to be partially effective against these oseltamivir resistant viruses. These immunocompromised ferrets provide a useful tool in the development of novel antiviral approaches for immunocompromised patients suffering from influenza.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: a multicentre cohort study.

          There are few data on the epidemiology and outcomes of influenza infection in recipients of solid-organ transplants. We aimed to establish the outcomes of pandemic influenza A H1N1 and factors leading to severe disease in a cohort of patients who had received transplants. We did a multicentre cohort study of adults and children who had received organ transplants with microbiological confirmation of influenza A infection from April to December, 2009. Centres were identified through the American Society of Transplantation Influenza Collaborative Study Group. Demographics, clinical presentation, treatment, and outcomes were assessed. Severity of disease was measured by admission to hospital and intensive care units (ICUs). The data were analysed with descriptive statistics. Proportions were compared by use of chi(2) tests. We used univariate analysis to identify factors leading to pneumonia, admission to hospital, and admission to an ICU. Multivariate analysis was done by use of a stepwise logistic regression model. We analysed deaths with Kaplan-Meier survival analysis. We assessed 237 cases of medically attended influenza A H1N1 reported from 26 transplant centres during the study period. Transplant types included kidney, liver, heart, lung, and others. Both adults (154 patients; median age 47 years) and children (83; 9 years) were assessed. Median time from transplant was 3.6 years. 167 (71%) of 237 patients were admitted to hospital. Data on complications were available for 230 patients; 73 (32%) had pneumonia, 37 (16%) were admitted to ICUs, and ten (4%) died. Antiviral treatment was used in 223 (94%) patients (primarily oseltamivir monotherapy). Seven (8%) patients given antiviral drugs within 48 h of symptom onset were admitted to an ICU compared with 28 (22.4%) given antivirals later (p=0.007). Children who received transplants were less likely to present with pneumonia than adults, but rates of admission to hospital and ICU were similar. Influenza A H1N1 caused substantial morbidity in recipients of solid-organ transplants during the 2009-10 pandemic. Starting antiviral therapy early is associated with clinical benefit as measured by need for ICU admission and mechanical ventilation. None. 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oseltamivir-Resistant Influenza Virus A (H1N1), Europe, 2007–08 Season

            Infection with influenza viruses A (H1N1), A (H3N2), or B causes substantial human illness and excess deaths each year ( 1 , 2 ). Vaccination against seasonal influenza is the key control measure used in Europe to minimize illness and death. Antigenic mismatch between vaccine components and circulating viruses occurs every few years, requiring reformulation of the vaccine ( 1 ). In addition, suboptimal immunization in patient groups for which vaccine is recommended provides the rationale for use of antiviral drugs in the prophylaxis and treatment of influenza. M2 ion channel inhibitors (M2Is), amantadine and rimantadine, have been available since 1964, but adverse effects, rapid development of resistance, and lack of activity against influenza B have limited their usefulness ( 3 ). The introduction of neuraminidase inhibitors (NAIs), oral oseltamivir and inhaled zanamivir, which are active against both influenza type A and B viruses, was a major breakthrough in treatment and prophylaxis of influenza using antiviral drugs ( 4 ). However, prescription data indicate that they are not widely used in Europe (Figure 1); by contrast, in Japan during the 2003–04 season alone, ≈6 million NAI treatment courses were prescribed ( 5 ). Figure 1 Prescription data of oseltamivir treatment courses for Western Europe (in thousands); 12 months of data for each year 2002–2007 and through September for 2008. Data from the United Kingdom, the Netherlands, Switzerland, and Portugal are excluded because of negligible values. Data provided by IMS Health (www.imshealth.com), London, UK. Before the introduction of NAIs in 1999, and until 2007, 1, and therefore the peak incidence rate for 2007–08 is significantly higher than that for 2000–01.
#Data for seasons 2002–03, 2003–04, and 2004–05 were missing. Methods Clinical Influenza Activity The European Influenza Surveillance Scheme (EISS) actively monitored influenza activity from week 40 (October 1–7) of 2007 through week 19 (May 5–11) of 2008. EISS covers all 27 European Union countries plus Croatia, Norway, Serbia, Switzerland, Turkey, and Ukraine. In each country each week, 1 or several networks of sentinel general practitioners (GPs) reported rates of consultation for influenza-like illness (ILI) or acute respiratory infection (ARI) ( 15 – 17 ). ARI includes ILI and all other acute respiratory infections. For Croatia, Finland, Turkey, and Ukraine, no consultation data were available. Virologic Analysis Sentinel GPs involved in clinical data recording of ILI or ARI also send nasal, pharyngeal, or nasopharyngeal specimens from a subset of their patients to the National Influenza Centers (NICs) for virus detection and characterization by using a variety of genetic or phenotypic methods ( 18 – 20 ). The NICs also analyzed specimens and influenza viruses obtained from other sources (e.g., from nonsentinel GPs, hospitals, or institutions). For Cyprus and Turkey, no virus detection data were available. Antiviral Drug Susceptibility Monitoring Antiviral susceptibility data were generated either through the European Surveillance Network for Vigilance against Viral Resistance (VIRGIL) project at a single laboratory in London (UK Health Protection Agency) or directly by individual NICs by using methods described previously ( 14 , 21 ). Genetic analysis of virus isolates or clinical specimens was performed by using cycle-sequencing or pyrosequencing the NA gene, targeting the H275Y amino acid substitution in the N1 NA ( 22 ). The 50% inhibitory NAI concentration (IC50) of virus isolates was determined by using fluorescent or chemiluminescent enzyme assays ( 23 , 24 ). ORVs were defined as influenza viruses A (H1N1) with an IC50 >100 nmol/L for oseltamivir. Susceptibility to zanamivir was determined by using the same enzymatic method. Susceptibility to M2Is was determined by cycle-sequencing or pyrosequencing the M2 protein gene, targeting known resistance markers. Antiviral susceptibility data were not available for Cyprus, Lithuania, and Malta. Data Analysis To obtain United Kingdom estimates, clinical and virologic surveillance data and antiviral susceptibility data were totaled for England, Northern Ireland, Scotland, and Wales. A single web-based European database at the EISS password-protected website (www.eiss.org) was used to collect antiviral susceptibility data and linked patient demographic and clinical data ( 25 ). Updates on possible resistant viruses were provided at regular intervals to EISS members, the World Health Organization, and the European Centre for Disease Prevention and Control. The timing of the first week of continuous detection of influenza virus A and ORVs across Europe, both based on date of specimen collection, were analyzed by linear regression analysis using center longitude and center latitude of a country as explanatory variables. A maximum interruption of 1 week with no influenza virus A or ORV detection was allowed in estimating the first week of continuous detection. The average European delay between the first week of continuous detection of influenza virus A and of ORV was calculated as the average of the differences in number of weeks between both, by country. The analysis of temporal trends in the prevalence of ORVs in countries and for Europe was confounded by different levels of sampling in different countries ( 18 ), enhanced antiviral susceptibility testing in some countries, and lack of data on the proportion of ORVs for some or most weeks for several other countries. To ensure a more representative picture of temporal trends in the proportion of ORVs, a mixed effect logistic regression modeling approach ( 26 , 27 ) was used, which allows modeling of binomial proportions, i.e., a numerator and a denominator as a function of time, where the coefficients of this function are allowed to vary for each country around a mean value, combining data from all countries. If there are no observations or the denominator is small, the fit will shrink to its overall mean, and uncertainties increase. Three fractions were modeled: “ILI per population covered,” “influenza A virus detections per specimens tested,” and “A (H1N1) resistant per A (H1N1) tested.” By multiplying the first 2 fractions by the total population, we obtained the number of patients with ILI who had influenza A in a country. By dividing this number by the sum of the number of patients with ILI who had influenza A for all countries, we obtained the relative weights. By multiplying the weights with the prevalences of ORVs summed over all countries, we obtained the weekly European prevalences of ORVs. The modeled weekly prevalences of ORVs were subsequently used to calculate the average prevalence of ORVs by country and for Europe (Technical Appendix). We performed all statistical analyses by using the software package R version 2.8.0 ( 28 ). Box-and-whisker plot analysis was used to select viruses with outlying high IC50 values for further analysis ( 7 , 29 ). For oseltamivir outlier identification, all viruses defined as resistant for oseltamivir (IC50 >100 nmol/L) were first removed. Minor outliers were defined as values lying between the upper quartile (UQ) + 1.5 × interquartile region (IQR) and UQ + 3 × IQR; major outliers were defined as values lying above UQ + 3 × IQR, based on analysis of all viruses in a particular subtype over a particular winter season. Phylogenetic analysis of NA and hemagglutinin (HA) gene sequences used maximum parsimony (PAUP* version 4.0; Sinauer Associates, Sunderland, MA, USA). Sequences of ORVs and oseltamivir-sensitive influenza A (H1N1) viruses (OSVs) were chosen as representative of influenza viruses A (H1N1) isolated during the 2007–08 influenza season (i.e., weeks 40–52 of 2007 and weeks 1–19 of 2008) in different European countries and a few from other regions of the world and were compared with those of a few influenza viruses A (H1N1) isolated before the 2007–08 season, including sporadically isolated ORVs. GenBank accession numbers are listed in the Appendix Table. Results Seasonal Surveillance The 2007–08 influenza season in Europe was initially dominated by influenza viruses A (n = 10,720; 60% of all influenza virus detections). Influenza viruses B (n = 7,150; 40% of all influenza virus detections) became dominant in week 8 (Figure 2). Of the 5,984 (56%) influenza viruses A subtyped, 5,748 (96%) were H1, and 236 (4%) were H3. Overall, influenza virus detections peaked in week 6, in week 4 for influenza viruses A (H1N1), and in week 8 for influenza viruses B. Of the 2,136 influenza viruses A (H1N1) characterized antigenically, 97% were reported to be closely related to the vaccine strain A/Solomon Islands/3/2006, although half of these viruses were reported to be more closely related to A/Brisbane/59/2007, the vaccine strain recommended for the 2008–09 season ( 30 ). Figure 2 Total number of influenza virus detections, by type and subtype and by week, Europe, winter 2007–08. The first countries in Europe where influenza viruses A started to circulate continuously were France, Spain, Switzerland, and the United Kingdom in week 40. Spatial analysis of the timing of the first week of continuous detection of influenza viruses A across Europe (n = 30 countries) showed a west-to-east pattern: estimated parameter for longitude was 0.261 weeks per degree longitude (95% confidence interval [CI] 0.138–0.385, p = 0.001), and for latitude –0.108 weeks per degree latitude (95% CI –0.324 through 0.108, p = 0.366), with R2 = 0.32 for the linear regression fit. Antiviral Drug Susceptibility The estimated number of influenza viruses A (H1N1) among all detected influenza viruses A (n = 10,720) was 10,291 following extrapolation from the proportion of 96% influenza viruses A (H1N1) among all 5,984 subtyped influenza viruses A. Of the 10,291 influenza viruses A (H1N1), 2,949 (29%) were tested for antiviral susceptibility, 1,080 by both phenotypic assay (IC50) and sequencing, 601 by phenotypic assay alone, and 1,268 by sequencing alone. Of the 2,949 viruses tested, 712 (24%) were oseltamivir resistant either by presence of the H275Y substitution (n = 548) or an IC50 >100 nmol/L for oseltamivir (n = 463) (Figure 3). Correlation was 100% between sensitive phenotype (IC50 100 nmol/L) and the presence of Y275 (n = 299). OSVs (n = 1,218) had a median IC50 of 1.7 nmol/L for oseltamivir (range 0.1 nmol/L–23.2 nmol/L) and only 9 minor outliers (thresholds IC50 >12.0 nmol/L and 8.5 nmol/L and 100 nmol/L for NAI drugs (A. Lackenby et al., unpub. data), in concordance with results from worldwide surveillance ( 8 , 9 ). In 2007–08, influenza viruses A (H3N2) and B circulating in Europe remained sensitive to NAI drugs. This emergence of oseltamivir-resistant influenza virus A (H1N1) in Europe coincided with the dominant circulation of this virus subtype during the 2007–08 winter in Europe and the emergence of a new drift variant, A/Brisbane/59/2007 ( 30 ). Of the last 12 influenza seasons, influenza viruses A (H1N1) were dominant only in 2000–01, which included a new drift variant, A/New Caledonia/20/99 ( 20 ). In the other 10 seasons, influenza viruses A (H1N1) played a minor role, with influenza viruses A (H3N2) dominant in 9 seasons. Compared with 2000–01, peak incidence rates for ILI or ARI in 7 of 13 countries were similar or lower in 2007–08 (Table). In 6 countries, the peak incidence rates were significantly higher in 2007–08 than in 2000–01, but with a <2-fold difference in 5 countries and, in Spain only, a 4.8-fold difference. Both the 2000–01 and 2007–08 seasons were unremarkable in the overall clinical impact of influenza, with normal seasonal activity as measured by comparison of peak incidence rates for all seasons since 2000–01. Sporadically occurring A/New Caledonia/20/99-like ORVs with H275Y were detected during the 2006–07 season in the United Kingdom and United States but did not become epidemiologically important. Indeed, the genetic background plays a role in retaining the replication efficiency and pathogenicity of recombinant influenza viruses A (H5N1) and A (H1N1) after introduction of tyrosine at position 275 ( 33 ). Furthermore, other previously analyzed influenza viruses A (H1N1) with the H275Y mutation showed impaired replicative ability in cell culture and reduced infectivity and substantially compromised pathogenicity in animal models, compared with the corresponding wild-type virus ( 34 , 35 ). The coincidental emergence of H275Y with the circulation of the A/Brisbane/59/2007 drift variant may have favored the emergence of fit transmissible ORVs. This point is also illustrated by the emergence of A/Brisbane/59/2007-like ORVs in other parts of the Northern Hemisphere and their continued circulation during the 2008 Southern Hemisphere influenza epidemic season ( 36 – 38 ). Since the last quarter of 2007, ORVs have been detected in continents other than Europe, with proportions of ORVs varying from 100% in South Africa and Australia to <5% in Japan. Trend data are limited: a slight monthly increase was noted in China/Hong Kong and Japan; in Canada, the increase was similar to that in Europe, from 0% ORVs in November 2007 to 86% ORVs in April 2008 ( 36 ). Using modeling, we showed that the prevalence of ORVs increased in the European region from ≈0% at the start to 56% at the end of the season. The finding of a high prevalence of ORVs in the community and the overall temporal increase in resistance demonstrates that the previously documented reduced fitness of viruses bearing the H275Y mutation, ostensibly caused by structural and functional constraints ( 10 ), has been overcome in currently circulating influenza viruses A (H1N1). The results of Rameix-Welti et al. ( 32 ) suggest that a combination of specific amino acid substitutions have increased the affinity of the NA of recent influenza viruses A (H1N1) (ORVs and OSVs) for substrate. A better balance of NA and HA activities in ORVs compared with OSVs may have contributed to the overall fitness and transmissibility of ORVs. However, growth curves conducted in tissue culture of pairs of ORVs and OSVs demonstrated no differences in growth kinetics or final virus yields. Therefore, changes in other genes also may be involved in the overall impact on the fitness of ORVs, for which whole genome sequencing is necessary. For Europe, no focal point of initiation of spread could be identified. The spread of ORV from west to east paralleled that of influenza virus A in Europe, and there was an average delay of 5.7 weeks for the appearance of ORVs after the start of influenza virus A circulation. However, the low R2 values for both patterns make definitive conclusions difficult to draw about the spatial spread of either influenza viruses A or ORVs. Several independent introductions into European countries of a sensitive and a resistant strain might explain the low R2 values. Estimating whether a global focal point exists from which ORVs emerged to spread to the rest of the world is not possible, but the fact that Japan, the country with the highest per capita use of oseltamivir ( 5 ), had relatively low levels of circulating ORVs during the 2007–08 influenza season is relevant and reflects the limited circulation of the clade 2B A/Brisbane/59/2007-like viruses belonging to the European cluster in this region ( 31 , 36 ). The close relationships between the NA sequences of most of the 2007–08 European ORVs and their segregation from those of OSVs suggest that resistance results in large part from the spread of a single variant. Phylogenetic analyses show that this is a property of clade 2B A/Brisbane/59/2007-like viruses and is not associated with emergence of another antigenic variant. However, identification of other resistant variants in the United Kingdom, some of which are more closely related to OSVs than to most ORVs (e.g., A/England/654/2007) indicates the independent parallel emergence of multiple resistant variants. This is emphasized by small distinct clusters of closely related ORVs in Japan that are related to European OSVs, whereas only a few of the Japanese ORVs belonged to the large European ORVs cluster ( 31 ). Resolution of the origin and frequency of emergence of ORVs and association with drug use clearly require substantially more intimate knowledge of the genetic relationships among OSVs and ORVs worldwide. Our observations suggest that the new genetic background of influenza viruses A (H1N1) that appeared in 2007 enabled the virus to develop oseltamivir resistance independently at several locations in the world. The combined effect of the relatively high level of circulation of influenza viruses A (H1N1) in Europe; the introduction of a new antigenic drift variant in a susceptible population, partly related to the lack of substantial influenza virus A (H1N1) circulation since the 2000–01 season; and the uncompromised transmissibility of the ORVs contributed to the epidemiologic success of the ORVs during the 2007–08 season. This phenomenon shows clearly that continuation of antiviral susceptibility monitoring and increasing capacity for timely response are essential ( 21 , 39 ). In addition, the appearance of viable transmitting ORVs is a reminder that the level of resistance to oseltamivir of seasonal or pandemic virus cannot be predicted, and therefore antiviral strategies should not rely on single drugs ( 40 ). Although oseltamivir remains a valuable influenza antiviral agent, the emergence of natural resistance shifts attention from oseltamivir to other antiviral agents and to improved vaccination (e.g., greater vaccination coverage, more immunogenic and broadly reacting vaccines) in the fight against seasonal and pandemic influenza. Supplementary Material Appendix Figure Fitted curves to the proportion oseltamivir-resistant viruses among influenza viruses A (H1N1) tested for resistance (both sentinel and nonsentinel) for all countries for which data were available for inclusion in modeling the European trend (see Figures 4 and 5). The x axes display the week in which the clinical specimens were collected (weeks 40-52 of 2007 and weeks 1-19 of 2008). The y axes display the percentage oseltamivir resistant influenza viruses A (H1N1). Plus signs indicate the actual determined proportions resistant A (H1N1) viruses; light gray region is the 95% confidence interval of the model. Appendix Table GenBank accession numbers of hemagglutinin and neuraminidase sequences used in the phylogenetic Analyses. Technical Appendix Statistical Analysis of Temporal Trends of Resistant Influenza A (H1N1) Viruses, Europe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

              Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2013
                May 2013
                23 May 2013
                : 9
                : 5
                : e1003343
                Affiliations
                [1 ]Department of Virology, ErasmusMC, Rotterdam, The Netherlands
                [2 ]Viroclinics Biosciences B.V., Rotterdam, The Netherlands
                [3 ]Department of Paediatrics, ErasmusMC-Sophia, Rotterdam, The Netherlands
                [4 ]Department of Neurology, ErasmusMC, Rotterdam, The Netherlands
                [5 ]Department of Hospital Pharmacy, ErasmusMC, Rotterdam, The Netherlands
                Paul-Ehrlich-Institut, Germany
                Author notes

                I have read the journal's policy and athors have the following conflicts: ADMEO is chief scientific officer of Viroclinics Biosciences BV. Part of this work was funded by Hoffmann-La Roche Ltd. Hoffmann-La Roche did not participate in any of the work leading to this manuscript. For the immunocompromised ferret model a patent is pending (PCT/EP2012/063497). This does not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

                Conceived and designed the experiments: EvdV KJS AGV BK MS ADMEO. Performed the experiments: EvdV KJS GvA EJBVK LdW RJM BK. Analyzed the data: EvdV KJS GvA EJBVK LdW PLAF RJM. Contributed reagents/materials/analysis tools: RJM TML BvdN BK. Wrote the paper: EvdV KJS ADMEO.

                [¤]

                Current address: Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota D.E., Colombia

                Article
                PPATHOGENS-D-12-02791
                10.1371/journal.ppat.1003343
                3662664
                23717200
                15f6c024-d021-4bdb-b3f1-08c95e62fca9
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 November 2012
                : 21 March 2013
                Page count
                Pages: 11
                Funding
                Part of this work was funded by Hoffmann-La Roche Ltd. Hoffmann-La Roche did not participate in any of the work leading to this manuscript. For the immunocompromised ferret model a PCT application has been filed (PCT/EP2012/063497). ADMEO is chief science officer of Viroclinics Biosciences BV, a contract research organisation that collaborates with pharmaceutical companies. PF and AO are financially supported by the Virgo consortium, which is funded by the Dutch government project number FES0908 and the Netherlands Genomics Initiative (NGI) project number 050-060-452. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Infectious Diseases
                Viral Diseases
                Influenza

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article