6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plant-Derived Human Vaccines: Recent Developments

      review-article
      , ,
      Biodrugs
      Springer International Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          A guide to vaccinology: from basic principles to new developments

          Immunization is a cornerstone of public health policy and is demonstrably highly cost-effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, it is clear that there are major challenges ahead to develop new vaccines for difficult-to-target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.

            Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Production of recombinant proteins by microbes and higher organisms.

              Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S-S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.
                Bookmark

                Author and article information

                Contributors
                Ann.meyers@uct.ac.za
                Journal
                BioDrugs
                BioDrugs
                Biodrugs
                Springer International Publishing (Cham )
                1173-8804
                1179-190X
                12 July 2022
                : 1-17
                Affiliations
                GRID grid.7836.a, ISNI 0000 0004 1937 1151, Biopharming Research Unit, Department of Molecular and Cell Biology, , University of Cape Town, ; Rondebosch, Cape Town, 7700 South Africa
                Author information
                http://orcid.org/0000-0002-9044-227X
                http://orcid.org/0000-0002-8722-2508
                http://orcid.org/0000-0002-2116-7913
                Article
                544
                10.1007/s40259-022-00544-8
                9275545
                35821564
                15faf374-c1d4-46ee-9086-fb5f3254de3f
                © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 22 June 2022
                Categories
                Review Article

                Comments

                Comment on this article