7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Twenty-Four-Hour Ambulatory Pulse Wave Analysis in Hypertension Management: Current Evidence and Perspectives

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Blood pressure measuring devices: recommendations of the European Society of Hypertension.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validation of a brachial cuff-based method for estimating central systolic blood pressure.

            The prognostic value of central systolic blood pressure has been established recently. At present, its noninvasive assessment is limited by the need of dedicated equipment and trained operators. Moreover, ambulatory and home blood pressure monitoring of central pressures are not feasible. An algorithm enabling conventional automated oscillometric blood pressure monitors to assess central systolic pressure could be of value. We compared central systolic pressure, calculated with a transfer-function like method (ARCSolver algorithm), using waveforms recorded with a regular oscillometric cuff suitable for ambulatory measurements, with simultaneous high-fidelity invasive recordings, and with noninvasive estimations using a validated device, operating with radial tonometry and a generalized transfer function. Both studies revealed a good agreement between the oscillometric cuff-based central systolic pressure and the comparator. In the invasive study, composed of 30 patients, mean difference between oscillometric cuff/ARCSolver-based and invasive central systolic pressures was 3.0 mm Hg (SD: 6.0 mm Hg) with invasive calibration of brachial waveforms and -3.0 mm Hg (SD: 9.5 mm Hg) with noninvasive calibration of brachial waveforms. Results were similar when the reference method (radial tonometry/transfer function) was compared with invasive measurements. In the noninvasive study, composed of 111 patients, mean difference between oscillometric cuff/ARCSolver-derived and radial tonometry/transfer function-derived central systolic pressures was -0.5 mm Hg (SD: 4.7 mm Hg). In conclusion, a novel transfer function-like algorithm, using brachial cuff-based waveform recordings, is suited to provide a realistic estimation of central systolic pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity.

              The importance of measuring aortic pulse wave velocity (PWVao), aortic augmentation index (Aix) and central systolic blood pressure (SBPao) has been shown under different clinical conditions; however, information on these parameters is hard to obtain. The aim of this study was to evaluate the accuracy of a new, easily applicable oscillometric device (Arteriograph), determining these parameters simultaneously, against invasive measurements. Aortic Aix, SBPao and PWVao were measured invasively during cardiac catheterization in 16, 55 and 22 cases, respectively, and compared with the values measured by the Arteriograph. We found strong correlation between the invasively measured aortic Aix and the oscillometrically measured brachial Aix on either beat-to-beat or mean value per patient basis (r = 0.9, P < 0.001; r = 0.94, P < 0.001), which allowed the noninvasive calculation of the aortic Aix without using generalized transfer function. Similarly strong correlation (r = 0.95, P < 0.001) was found between the invasively measured and the noninvasively calculated central SBPao; furthermore, the BHS assessment of the paired differences fulfilled the 'B' grading. The PWVao values measured invasively and by Arteriograph were 9.41 ± 1.8 m/s and 9.46 ± 1.8 m/s, respectively (mean ± SD); furthermore, the Pearson's correlation was 0.91 (P < 0.001). The limits of agreement were 11.4% for aortic Aix and 1.59 m/s for PWVao. Aix, SBPao and PWVao, measured oscillometrically, showed strong correlation with the invasively obtained values. The observed limits of agreement are encouragingly low for accepting the method for clinical use. Our results suggest that the PWVao values, measured by Arteriograph, are close to the true aortic PWV, determined invasively.
                Bookmark

                Author and article information

                Journal
                Current Hypertension Reports
                Curr Hypertens Rep
                Springer Nature
                1522-6417
                1534-3111
                October 2016
                September 22 2016
                October 2016
                : 18
                : 10
                Article
                10.1007/s11906-016-0681-2
                27659178
                160506c3-b270-4efd-9cbe-89c35217a9a3
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article