28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elongation factor Tu is a multifunctional and processed moonlighting protein

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (Sa Ef-Tu) and Mycoplasma pneumoniae (Mpn Ef-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (Mhp Ef-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant Mpn Ef-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.

          Higher eukaryotes sense microbes through the perception of pathogen-associated molecular patterns (PAMPs). Arabidopsis plants detect a variety of PAMPs including conserved domains of bacterial flagellin and of bacterial EF-Tu. Here, we show that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects. Treatment with either PAMP results in increased binding sites for both PAMPs. We used this finding in a targeted reverse-genetic approach to identify a receptor kinase essential for EF-Tu perception, which we called EFR. Nicotiana benthamiana, a plant unable to perceive EF-Tu, acquires EF-Tu binding sites and responsiveness upon transient expression of EFR. Arabidopsis efr mutants show enhanced susceptibility to the bacterium Agrobacterium tumefaciens, as revealed by a higher efficiency of T-DNA transformation. These results demonstrate that EFR is the EF-Tu receptor and that plant defense responses induced by PAMPs such as EF-Tu reduce transformation by Agrobacterium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis.

            Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PredictProtein server.

              PredictProtein (http://www.predictprotein.org) is an Internet service for sequence analysis and the prediction of protein structure and function. Users submit protein sequences or alignments; PredictProtein returns multiple sequence alignments, PROSITE sequence motifs, low-complexity regions (SEG), nuclear localization signals, regions lacking regular structure (NORS) and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions, disulfide-bonds, sub-cellular localization and functional annotations. Upon request fold recognition by prediction-based threading, CHOP domain assignments, predictions of transmembrane strands and inter-residue contacts are also available. For all services, users can submit their query either by electronic mail or interactively via the World Wide Web.
                Bookmark

                Author and article information

                Contributors
                Steven.Djordjevic@uts.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 September 2017
                11 September 2017
                2017
                : 7
                : 11227
                Affiliations
                [1 ]ISNI 0000 0004 1936 7611, GRID grid.117476.2, The ithree institute, University of Technology Sydney, ; PO Box 123 Broadway, NSW, 2007 Australia
                [2 ]ISNI 0000 0001 2111 7257, GRID grid.4488.0, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, ; Fetscherstrasse 74, 01307 Dresden, Germany
                [3 ]ISNI 0000 0004 1936 7611, GRID grid.117476.2, Proteomics Core Facility, University of Technology Sydney, ; PO Box 123 Broadway, NSW, 2007 Australia
                [4 ]GRID grid.420132.6, Quadram Institute Bioscience, Norwich Research Park, ; Norwich, Norfolk, NR4 7UA UK
                Author information
                http://orcid.org/0000-0002-0322-2595
                http://orcid.org/0000-0002-3070-9761
                Article
                10644
                10.1038/s41598-017-10644-z
                5593925
                28894125
                1605c690-4c2d-414e-8892-1abab8a41680
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 May 2017
                : 10 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article