Blog
About

36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Predicting climate-driven regime shifts versus rebound potential in coral reefs

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

            Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rising to the challenge of sustaining coral reef resilience.

              Phase-shifts from one persistent assemblage of species to another have become increasingly commonplace on coral reefs and in many other ecosystems due to escalating human impacts. Coral reef science, monitoring and global assessments have focused mainly on producing detailed descriptions of reef decline, and continue to pay insufficient attention to the underlying processes causing degradation. A more productive way forward is to harness new theoretical insights and empirical information on why some reefs degrade and others do not. Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                February 2015
                January 14 2015
                February 2015
                : 518
                : 7537
                : 94-97
                Article
                10.1038/nature14140
                25607371
                © 2015

                Comments

                Comment on this article