19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative relationships between lacZ mutant frequency and DNA adduct frequency in Muta™Mouse tissues and cultured cells exposed to 3-nitrobenzanthrone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The frequency of stable DNA adducts in a target tissue can be used to assess biologically effective dose; however, the utility of the metric in a risk assessment context depends on the likelihood that the DNA damage will be manifested as mutation. Previously, we employed the Muta™Mouse system to examine the induction of lacZ mutants and DNA adducts following exposure to the well-studied mutagenic carcinogen 3-nitrobenzanthrone (3-NBA). In this follow-up work, we examined the empirical relationships between total adduct frequency and mutant frequency (MF) in tissues and cultured cells following acute 3-NBA exposure. The results show a significant induction of DNA damage and lacZ mutants in liver, colon and bone marrow, as well as FE1 pulmonary epithelial cells. In contrast, lung and small intestine samples had low, but significantly elevated adduct levels, with no significant increases in lacZ MF. Additional analyses showed a significant relationship between the mutagenic efficiency of total adducts, measured as the slope of the relationships between MF and total adduct frequency, and tissue-specific mitotic index (MI). The lack of mutation response in lung, in contrast to the high in vitro MF in FE-1 lung cells, is likely related to the 100-fold difference in MI. The lack of small intestine mutagenic response may be related to limited metabolic capacity, differences in DNA repair, and /or chemically induced apoptosis that has been observed for other potent mutagens. The results indicate that interpretation of adduct frequency values in a risk assessment context can be improved by considering the MI of the target tissue; however, more generalised interpretation is hampered by tissue-specific variations in metabolic capacity and damage processing. The work provides a proof of principle regarding the use of the Muta™Mouse system to critically examine the health risks associated with tissue-specific adduct loads.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment.

          There is a strong need for science-based risk assessment that utilizes known data from diverse sources to arrive at accurate assessments of human health risk. Such assessments will protect the public health without mandating unreasonable regulation. This paper utilizes 30 years of research on three "known human carcinogens": formaldehyde, vinyl chloride (VC), and ethylene oxide (EO), each of which forms DNA adducts identical to endogenous DNA adducts in all individuals. It outlines quantitative data on endogenous adducts, mutagenicity, and relationships between endogenous and exogenous adducts. Formaldehyde has the richest data set, with quantitative data on endogenous and exogenous DNA adducts from the same samples. The review elaborates on how such data can be used to inform the current risk assessment on formaldehyde, including both the biological plausibility and accuracy of projected risks. Finally, it extends the thought process to VC, EO, and additional areas of potential research, pointing out needs, nuances, and potential paths forward to improved understanding that will lead to strong science-based risk assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detailed review of transgenic rodent mutation assays.

            Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa.

              Replication across unrepaired DNA lesions in mammalian cells is effected primarily by specialized, low fidelity DNA polymerases. We studied translesion DNA synthesis (TLS) across a benzo[a]pyrene-guanine (BP-G) adduct, a major mutagenic DNA lesion generated by tobacco smoke. This was done using a quantitative assay that measures TLS indirectly, by measuring the recovery of gapped plasmids transfected into cultured mammalian cells. Analysis of PolK(+/+) mouse embryo fibroblasts (MEFs) showed that TLS across the BP-G adduct occurred with an efficiency of 48 +/- 4%, which is an order of magnitude higher than in Escherichia coli. In PolK(-/-) MEFs, bypass was 16 +/- 1%, suggesting that at least two-thirds of the BP-G adducts in MEFs were bypassed exclusively by polymerase kappa (polkappa). In contrast, poleta was not required for bypass across BP-G in a human XP-V cell line. Analysis of misinsertion specificity across BP-G revealed that bypass was more error-prone in MEFs lacking polkappa. Expression of polkappa from a plasmid introduced into PolK(-/-) MEFs restored both the extent and fidelity of bypass across BP-G. Polkappa was not required for bypass of a synthetic abasic site. In vitro analysis demonstrated efficient bypass across BP-G by both polkappa and poleta, suggesting that the biological role of polkappa in TLS across BP-G is due to regulation of TLS and not due to an exclusive ability to bypass this lesion. These results indicate that BP-G is bypassed in mammalian cells with relatively high efficiency and that polkappa bypasses BP-G in vivo with higher efficiency and higher accuracy than other DNA polymerases.
                Bookmark

                Author and article information

                Journal
                Mutagenesis
                Mutagenesis
                mutage
                Mutagenesis
                Oxford University Press (UK )
                0267-8357
                1464-3804
                March 2017
                17 January 2017
                17 January 2017
                : 32
                : 2
                : 299-312
                Affiliations
                [1 ] Environmental Health Science and Research Bureau, Health Canada , Tunney’s Pasture 0803A, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada and
                [1 ] King’s College London, Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, Franklin-Wilkins Building , 150 Stamford Street, London SE1 9NH, UK
                Author notes

                *To whom correspondence should be addressed. Tel: 613 941 7373; Fax: 613 941 8530; Email: paul.white@ 123456hc-sc.gc.ca

                Article
                gew067
                10.1093/mutage/gew067
                5638019
                28096451
                1620c8e9-0d60-4319-8638-7726c05b1a65
                © Her Majesty the Queen in Right of Canada 2017. Reproduced with the permission of the Minister of Health.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 14
                Funding
                Funded by: Health Canada intramural funding
                Funded by: Cancer Research UK http://dx.doi.org/10.13039/501100000289
                Award ID: C313/A14329
                Funded by: Wellcome Trust http://dx.doi.org/10.13039/100004440
                Award ID: 101126/Z/13/Z
                Award ID: 101126/B/13/Z
                Funded by: Wellcome Trust funded COMSIG
                Categories
                Original Manuscript

                Molecular biology
                Molecular biology

                Comments

                Comment on this article