18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral Vectors in Gene Therapy

      review-article
      Diseases
      MDPI
      prevention, therapy, immunotherapy, gene silencing, clinical trials, approved drugs

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Applications of viral vectors have found an encouraging new beginning in gene therapy in recent years. Significant improvements in vector engineering, delivery, and safety have placed viral vector-based therapy at the forefront of modern medicine. Viral vectors have been employed for the treatment of various diseases such as metabolic, cardiovascular, muscular, hematologic, ophthalmologic, and infectious diseases and different types of cancer. Recent development in the area of immunotherapy has provided both preventive and therapeutic approaches. Furthermore, gene silencing generating a reversible effect has become an interesting alternative, and is well-suited for delivery by viral vectors. A number of preclinical studies have demonstrated therapeutic and prophylactic efficacy in animal models and furthermore in clinical trials. Several viral vector-based drugs have also been globally approved.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics.

          Considered by some to be among the simpler forms of life, viruses represent highly evolved natural vectors for the transfer of foreign genetic information into cells. This attribute has led to extensive attempts to engineer recombinant viral vectors for the delivery of therapeutic genes into diseased tissues. While substantial progress has been made, and some clinical successes are over the horizon, further vector refinement and/or development is required before gene therapy will become standard care for any individual disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma.

            An oncolytic herpes simplex virus engineered to replicate selectively in tumor cells and to express granulocyte-macrophage colony-stimulating factor (GMCSF) was tested as a direct intralesional vaccination in melanoma patients. The work reported herein was performed to better characterize the effect of vaccination on local and distant antitumor immunity. Metastatic melanoma patients with accessible lesions were enrolled in a multicenter 50-patient phase II clinical trial of an oncolytic herpesvirus encoding GM-CSF (Oncovex(GM-CSF)). An initial priming dose of 10(6) pfu vaccine was given by intratumoral injection, followed by 10(8) pfu every 2 weeks to 24 total doses. Peripheral blood and tumor tissue were collected for analysis of effector T cells, CD4(+)FoxP3(+) regulatory T cells (Treg), CD8(+)FoxP3(+) suppressor T cells (Ts), and myeloid-derived suppressive cells (MDSC). Phenotypic analysis of T cells derived from tumor samples suggested distinct differences from peripheral blood T cells. There was an increase in melanomaassociated antigen recognized by T cells (MART-1)-specific T cells in tumors undergoing regression after vaccination compared with T cells derived from melanoma patients not treated with vaccine. There was also a significant decrease in Treg and Ts cells in injected lesions compared with noninjected lesions in the same and different melanoma patients. Similarly MDSC were increased in melanoma lesions but underwent a significant decrease only in vaccinated lesions. Melanoma patients present with elevated levels of Tregs, Ts, and MDSC within established tumors. Direct injection of Oncovex(GM-CSF) induces local and systemic antigen-specific T cell responses and decreases Treg, Ts, and MDSC in patients exhibiting therapeutic responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5.

              Double-stranded RNAs approximately 21 nucleotides long [small interfering RNA (siRNA)] are recognized as powerful reagents to reduce the expression of specific genes. To use them as reagents to protect cells against viral infection, effective methods for introducing siRNAs into primary cells are required. Here, we describe success in constructing a lentivirus-based vector to introduce siRNAs against the HIV-1 coreceptor, CCR5, into human peripheral blood T lymphocytes. With high-titer vector stocks, >40% of the peripheral blood T lymphocytes could be transduced, and the expression of a potent CCR5-siRNA resulted in up to 10-fold inhibition of CCR5 expression on the cell surface over a period of 2 weeks in the absence of selection. In contrast, the expression of another major HIV-1 coreceptor, CXCR4, was not affected. Importantly, blocking CCR5 expression by siRNAs provided a substantial protection for the lymphocyte populations from CCR5-tropic HIV-1 virus infection, dropping infected cells by 3- to 7-fold; only a minimal effect on infection by a CXCR4-tropic virus was observed. Thus, our studies demonstrate the feasibility and potential of lentiviral vector-mediated delivery of siRNAs as a general means of intracellular immunization for the treatment of HIV-1 and other viral diseases.
                Bookmark

                Author and article information

                Journal
                Diseases
                Diseases
                diseases
                Diseases
                MDPI
                2079-9721
                21 May 2018
                June 2018
                : 6
                : 2
                : 42
                Affiliations
                PanTherapeutics, CH1095 Lutry, Switzerland; lundstromkenneth@ 123456gmail.com ; Tel.: +41-79-776-6351
                Article
                diseases-06-00042
                10.3390/diseases6020042
                6023384
                29883422
                16214cad-adda-4eb2-a47a-737cf5240a28
                © 2018 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 April 2018
                : 16 May 2018
                Categories
                Review

                prevention,therapy,immunotherapy,gene silencing,clinical trials,approved drugs

                Comments

                Comment on this article