2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mining data from legacy taxonomic literature and application for sampling spiders of the Teutamus group (Araneae; Liocranidae) in Southeast Asia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Taxonomic literature contains information about virtually ever known species on Earth. In many cases, all that is known about a taxon is contained in this kind of literature, particularly for the most diverse and understudied groups. Taxonomic publications in the aggregate have documented a vast amount of specimen data. Among other things, these data constitute evidence of the existence of a particular taxon within a spatial and temporal context. When knowledge about a particular taxonomic group is rudimentary, investigators motivated to contribute new knowledge can use legacy records to guide them in their search for new specimens in the field. However, these legacy data are in the form of unstructured text, making it difficult to extract and analyze without a human interpreter. Here, we used a combination of semi-automatic tools to extract and categorize specimen data from taxonomic literature of one family of ground spiders (Liocranidae). We tested the application of these data on fieldwork optimization, using the relative abundance of adult specimens reported in literature as a proxy to find the best times and places for collecting the species ( Teutamus politus) and its relatives ( Teutamus group, TG) within Southeast Asia. Based on these analyses we decided to collect in three provinces in Thailand during the months of June and August. With our approach, we were able to collect more specimens of T. politus (188 specimens, 95 adults) than all the previous records in literature combined (102 specimens). Our approach was also effective for sampling other representatives of the TG, yielding at least one representative of every TG genus previously reported for Thailand. In total, our samples contributed 231 specimens (134 adults) to the 351 specimens previously reported in the literature for this country. Our results exemplify one application of mined literature data that allows investigators to more efficiently allocate effort and resources for the study of neglected, endangered, or interesting taxa and geographic areas. Furthermore, the integrative workflow demonstrated here shares specimen data with global online resources like Plazi and GBIF, meaning that others can freely reuse these data and contribute to them in the future. The contributions of the present study represent an increase of more than 35% on the taxonomic coverage of the TG in GBIF based on the number of species. Also, our extracted data represents 72% of the occurrences now available through GBIF for the TG and more than 85% of occurrences of T. politus. Taxonomic literature is a key source of undigitized biodiversity data for taxonomic groups that are underrepresented in the current biodiversity data sphere. Mobilizing these data is key to understanding and protecting some of the less well-known domains of biodiversity.

          Related collections

          Most cited references 88

          • Record: found
          • Abstract: not found
          • Article: not found

          Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Semantic tagging of and semantic enhancements to systematics papers: ZooKeys working examples

              Abstract The concept of semantic tagging and its potential for semantic enhancements to taxonomic papers is outlined and illustrated by four exemplar papers published in the present issue of ZooKeys. The four papers were created in different ways: (i) written in Microsoft Word and submitted as non-tagged manuscript (doi: 10.3897/zookeys.50.504); (ii) generated from Scratchpads and submitted as XML-tagged manuscripts (doi: 10.3897/zookeys.50.505 and doi: 10.3897/zookeys.50.506); (iii) generated from an author’s database (doi: 10.3897/zookeys.50.485) and submitted as XML-tagged manuscript. XML tagging and semantic enhancements were implemented during the editorial process of ZooKeys using the Pensoft Mark Up Tool (PMT), specially designed for this purpose. The XML schema used was TaxPub, an extension to the Document Type Definitions (DTD) of the US National Library of Medicine Journal Archiving and Interchange Tag Suite (NLM). The following innovative methods of tagging, layout, publishing and disseminating the content were tested and implemented within the ZooKeys editorial workflow: (1) highly automated, fine-grained XML tagging based on TaxPub; (2) final XML output of the paper validated against the NLM DTD for archiving in PubMedCentral; (3) bibliographic metadata embedded in the PDF through XMP (Extensible Metadata Platform); (4) PDF uploaded after publication to the Biodiversity Heritage Library (BHL); (5) taxon treatments supplied through XML to Plazi; (6) semantically enhanced HTML version of the paper encompassing numerous internal and external links and linkouts, such as: (i) vizualisation of main tag elements within the text (e.g., taxon names, taxon treatments, localities, etc.); (ii) internal cross-linking between paper sections, citations, references, tables, and figures; (iii) mapping of localities listed in the whole paper or within separate taxon treatments; (v) taxon names autotagged, dynamically mapped and linked through the Pensoft Taxon Profile (PTP) to large international database services and indexers such as Global Biodiversity Information Facility (GBIF), National Center for Biotechnology Information (NCBI), Barcode of Life (BOLD), Encyclopedia of Life (EOL), ZooBank, Wikipedia, Wikispecies, Wikimedia, and others; (vi) GenBank accession numbers autotagged and linked to NCBI; (vii) external links of taxon names to references in PubMed, Google Scholar, Biodiversity Heritage Library and other sources. With the launching of the working example, ZooKeys becomes the first taxonomic journal to provide a complete XML-based editorial, publication and dissemination workflow implemented as a routine and cost-efficient practice. It is anticipated that XML-based workflow will also soon be implemented in botany through PhytoKeys, a forthcoming partner journal of ZooKeys. The semantic markup and enhancements are expected to greatly extend and accelerate the way taxonomic information is published, disseminated and used.
                Bookmark

                Author and article information

                Contributors
                andres.riveraquiroz@naturalis.nl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 September 2020
                25 September 2020
                2020
                : 10
                Affiliations
                [1 ]GRID grid.425948.6, ISNI 0000 0001 2159 802X, Department of Terrestrial Zoology, Understanding Evolution group, , Naturalis Biodiversity Center, ; Darwinweg 2, 2333CR Leiden, The Netherlands
                [2 ]GRID grid.5132.5, ISNI 0000 0001 2312 1970, Institute of Biology Leiden (IBL), , Leiden University, ; Sylviusweg 72, 2333BE Leiden, The Netherlands
                [3 ]GRID grid.412434.4, ISNI 0000 0004 1937 1127, Faculty of Science and Technology, , Thammasat University, ; Rangsit, 12121 Pathum Thani Thailand
                [4 ]Plazi, Zinggstrasse 16, CH 3007 Bern, Switzerland
                Article
                72549
                10.1038/s41598-020-72549-8
                7519673
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                biodiversity, biogeography, conservation biology

                Comments

                Comment on this article