23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6–9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Stochastic resonance and sensory information processing: a tutorial and review of application.

          To review the stochastic resonance phenomena observed in sensory systems and to describe how a random process ('noise') added to a subthreshold stimulus can enhance sensory information processing and perception. Nonlinear systems need a threshold, subthreshold information bearing stimulus and 'noise' for stochastic resonance phenomena to occur. These three ingredients are ubiquitous in nature and man-made systems, which accounts for the observation of stochastic resonance in fields and conditions ranging from physics and engineering to biology and medicine. The stochastic resonance paradigm is compatible with single-neuron models or synaptic and channels properties and applies to neuronal assemblies activated by sensory inputs and perceptual processes as well. Here we review a few of the landmark experiments (including psychophysics, electrophysiology, fMRI, human vision, hearing and tactile functions, animal behavior, single/multiunit activity recordings). Models and experiments show a peculiar consistency with known neuronal and brain physiology. A number of naturally occurring 'noise' sources in the brain (e.g. synaptic transmission, channel gating, ion concentrations, membrane conductance) possibly accounting for stochastic resonance phenomena are also reviewed. Evidence is given suggesting a possible role of stochastic resonance in brain function, including detection of weak signals, synchronization and coherence among neuronal assemblies, phase resetting, 'carrier' signals, animal avoidance and feeding behaviors. Stochastic resonance is a ubiquitous and conspicuous phenomenon compatible with neural models and theories of brain function. The available evidence suggests cautious interpretation, but justifies research and should encourage neuroscientists and clinical neurophysiologists to explore stochastic resonance in biology and medical science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The benefits of noise in neural systems: bridging theory and experiment.

            Although typically assumed to degrade performance, random fluctuations, or noise, can sometimes improve information processing in non-linear systems. One such form of 'stochastic facilitation', stochastic resonance, has been observed to enhance processing both in theoretical models of neural systems and in experimental neuroscience. However, the two approaches have yet to be fully reconciled. Understanding the diverse roles of noise in neural computation will require the design of experiments based on new theory and models, into which biologically appropriate experimental detail feeds back at various levels of abstraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

              Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                29 January 2016
                2016
                : 7
                : 34
                Affiliations
                [1] 1Department of Teacher Education and Sports, Sogn og Fjordane University College Sogndal, Norway
                [2] 2Department of Psychology, Karolinska University Hospital Stockholm, Sweden
                Author notes

                Edited by: Patrik Sörqvist, University of Gävle, Sweden

                Reviewed by: Andre Brechmann, Leibniz Institute for Neurobiology, Germany; Staffan Hygge, University of Gävle, Sweden

                *Correspondence: Göran B. W. Söderlund, goran.soderlund@ 123456hisf.no

                These authors have shared first authorship.

                This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2016.00034
                4731512
                26858679
                1638dbc8-73ac-4750-abb7-2f2e84c62a73
                Copyright © 2016 Söderlund and Jobs.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 October 2015
                : 08 January 2016
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 91, Pages: 11, Words: 0
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                speech recognition,adhd,hagerman test,speech in noise,white noise,stochastic resonance

                Comments

                Comment on this article