60
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola.

          Results

          Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses.

          Conclusions

          Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods.

          Related collections

          Most cited references 63

          • Record: found
          • Abstract: found
          • Article: not found

          PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference

          PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial genome variation and the origin of modern humans.

            The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination, high substitution rate and maternal mode of inheritance. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences.

              The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit from the information that is implicit in empirical substitution matrices such as BLOSUM-62. Taken together with the generally higher rate of synonymous mutations over non-synonymous ones, this means that the phylogenetic signal disappears much more rapidly from DNA sequences than from the encoded proteins. It is therefore preferable to align coding DNA at the amino acid level and it is for this purpose we have constructed the program RevTrans. RevTrans constructs a multiple DNA alignment by: (i) translating the DNA; (ii) aligning the resulting peptide sequences; and (iii) building a multiple DNA alignment by 'reverse translation' of the aligned protein sequences. In the resulting DNA alignment, gaps occur in groups of three corresponding to entire codons, and analogous codon positions are therefore always lined up. These features are useful when constructing multiple DNA alignments for phylogenetic analysis. RevTrans also accepts user-provided protein alignments for greater control of the alignment process. The RevTrans web server is freely available at http://www.cbs.dtu.dk/services/RevTrans/.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2010
                11 June 2010
                : 11
                : 371
                Affiliations
                [1 ]State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
                [2 ]Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
                [3 ]Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
                [4 ]Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
                [5 ]Department of Entomology, Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Netherlands
                Article
                1471-2164-11-371
                10.1186/1471-2164-11-371
                2890569
                20537196
                Copyright ©2010 Wei et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Genetics

                Comments

                Comment on this article