24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calmodulin antagonists induce cell cycle arrest and apoptosis in vitro and inhibit tumor growth in vivo in human multiple myeloma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human multiple myeloma (MM) is an incurable hematological malignancy for which novel therapeutic agents are needed. Calmodulin (CaM) antagonists have been reported to induce apoptosis and inhibit tumor cell invasion and metastasis in various tumor models. However, the antitumor effects of CaM antagonists on MM are poorly understood. In this study, we investigated the antitumor effects of naphthalenesulfonamide derivative selective CaM antagonists W-7 and W-13 on MM cell lines both in vitro and in vivo.

          Methods

          The proliferative ability was analyzed by the WST-8 assay. Cell cycle was evaluated by flow cytometry after staining of cells with PI. Apoptosis was quantified by flow cytometry after double-staining of cells by Annexin-V/PI. Molecular changes of cell cycle and apoptosis were determined by Western blot. Intracellular calcium levels and mitochondrial membrane potentials were determined using Fluo-4/AM dye and JC-10 dye, respectively. Moreover, we examined the in vivo anti-MM effects of CaM antagonists using a murine xenograft model of the human MM cell line.

          Results

          Treatment with W-7 and W-13 resulted in the dose-dependent inhibition of cell proliferation in various MM cell lines. W-7 and W-13 induced G1 phase cell cycle arrest by downregulating cyclins and upregulating p21 cip1. In addition, W-7 and W-13 induced apoptosis via caspase activation; this occurred partly through the elevation of intracellular calcium levels and mitochondrial membrane potential depolarization and through inhibition of the STAT3 phosphorylation and subsequent downregulation of Mcl-1 protein. In tumor xenograft mouse models, tumor growth rates in CaM antagonist-treated groups were significantly reduced compared with those in the vehicle-treated groups.

          Conclusions

          Our results demonstrate that CaM antagonists induce cell cycle arrest, induce apoptosis via caspase activation, and inhibit tumor growth in a murine MM model and raise the possibility that inhibition of CaM might be a useful therapeutic strategy for the treatment of MM.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Lost in transcription: p21 repression, mechanisms, and consequences.

          The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondria and calcium: from cell signalling to cell death.

            M R Duchen (2000)
            While a pathway for Ca2+ accumulation into mitochondria has long been established, its functional significance is only now becoming clear in relation to cell physiology and pathophysiology. The observation that mitochondria take up Ca2+ during physiological Ca2+ signalling in a variety of cell types leads to four questions: (i) 'What is the impact of mitochondrial Ca2+ uptake on mitochondrial function?' (ii) 'What is the impact of mitochondrial Ca2+ uptake on Ca2+ signalling?' (iii) 'What are the consequences of impaired mitochondrial Ca2+ uptake for cell function?' and finally (iv) 'What are the consequences of pathological [Ca2+]c signalling for mitochondrial function?' These will be addressed in turn. Thus: (i) accumulation of Ca2+ into mitochondria regulates mitochondrial metabolism and causes a transient depolarisation of mitochondrial membrane potential. (ii) Mitochondria may act as a spatial Ca2+ buffer in many cells, regulating the local Ca2+ concentration in cellular microdomains. This process regulates processes dependent on local cytoplasmic Ca2+ concentration ([Ca2+]c), particularly the flux of Ca2+ through IP3-gated channels of the endoplasmic reticulum (ER) and the channels mediating capacitative Ca2+ influx through the plasma membrane. Consequently, mitochondrial Ca2+ uptake plays a substantial role in shaping [Ca2+]c signals in many cell types. (iii) Impaired mitochondrial Ca2+ uptake alters the spatiotemporal characteristics of cellular [Ca2+]c signalling and downregulates mitochondrial metabolism. (iv) Under pathological conditions of cellular [Ca2+]c overload, particularly in association with oxidative stress, mitochondrial Ca2+ uptake may trigger pathological states that lead to cell death. In the model of glutamate excitotoxicity, microdomains of [Ca2+]c are apparently central, as the pathway to cell death seems to require the local activation of neuronal nitric oxide synthase (nNOS), itself held by scaffolding proteins in close association with the NMDA receptor. Mitochondrial Ca2+ uptake in combination with NO production triggers the collapse of mitochondrial membrane potential, culminating in delayed cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells.

              Interleukin 6 (IL-6) is the major survival factor for myeloma tumor cells and induces signaling through the STAT proteins. We report that one STAT family member, Stat3, is constitutively activated in bone marrow mononuclear cells from patients with multiple myeloma and in the IL-6-dependent human myeloma cell line U266. Moreover, U266 cells are inherently resistant to Fas-mediated apoptosis and express high levels of the antiapoptotic protein Bcl-xL. Blocking IL-6 receptor signaling from Janus kinases to the Stat3 protein inhibits Bcl-xL expression and induces apoptosis, demonstrating that Stat3 signaling is essential for the survival of myeloma tumor cells. These findings provide evidence that constitutively activated Stat3 signaling contributes to the pathogenesis of multiple myeloma by preventing apoptosis.
                Bookmark

                Author and article information

                Contributors
                yokokura@med.kagawa-u.ac.jp
                yokosaki@med.kagawa-u.ac.jp
                amatuoka@med.kagawa-u.ac.jp
                oima@med.kagawa-u.ac.jp
                hdobashi@med.kagawa-u.ac.jp
                sbandoh@med.kagawa-u.ac.jp
                m-takuya@med.kagawa-u.ac.jp
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                26 November 2014
                26 November 2014
                2014
                : 14
                : 1
                : 882
                Affiliations
                Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan
                Article
                5061
                10.1186/1471-2407-14-882
                4258255
                25424011
                163d4623-83a7-4c03-9603-448bc83b8917
                © Yokokura et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 August 2014
                : 19 November 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Oncology & Radiotherapy
                calmodulin,multiple myeloma,cell cycle,apoptosis
                Oncology & Radiotherapy
                calmodulin, multiple myeloma, cell cycle, apoptosis

                Comments

                Comment on this article