20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual-Element Transducer with Phase-Inversion for Wide Depth of Field in High-Frequency Ultrasound Imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In high frequency ultrasound imaging (HFUI), the quality of focusing is deeply related to the length of the depth of field (DOF). In this paper, a phase-inversion technique implemented by a dual-element transducer is proposed to enlarge the DOF. The performance of the proposed method was numerically demonstrated by using the ultrasound simulation program called Field-II. A simulated dual-element transducer was composed of a disc- and an annular-type elements, and its aperture was concavely shaped to have a confocal point at 6 mm. The area of each element was identical in order to provide same intensity at the focal point. The outer diameters of the inner and the outer elements were 2.1 mm and 3 mm, respectively. The center frequency of each element was 40 MHz and the f-number (focal depth/aperture size) was two. When two input signals with 0° and 180° phases were applied to inner and outer elements simultaneously, a multi-focal zone was generated in the axial direction. The total −6 dB DOF, i.e., sum of two −6 dB DOFs in the near and far field lobes, was 40% longer than that of the conventional single element transducer. The signal to noise ratio (SNR) was increased by about two times, especially in the far field. The point and cyst phantom simulation were conducted and their results were identical to that of the beam pattern simulation. Thus, the proposed scheme may be a potential method to improve the DOF and SNR in HFUI.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study.

          A computer simulation is used to investigate the relationship between skin impedance and image artefacts in electrical impedance tomography. Sets of electrode impedance are generated with a pseudo-random distribution and used to introduce errors in boundary voltage measurements. To simplify the analysis, the non-idealities in the current injection circuit are replaced by a fixed common-mode error term. The boundary voltages are reconstructed into images and inspected. Where the simulated skin impedance remains constant between measurements, large impedances (> 2k omega) do not cause significant degradation of the image. Where the skin impedances 'drift' between measurements, a drift of 5% from a starting impedance of 100 omega is sufficient to cause significant image distortion. If the skin impedances vary randomly between measurements, they have to be less than 10 omega to allow satisfactory images. Skin impedances are typically 100-200 omega at 50 kHz on unprepared skin. These values are sufficient to cause image distortion if they drift over time. It is concluded that the patient's skin should be abraded to reduce impedance, and measurements should be avoided in the first 10 min after electrode placement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution ultrasonic imaging of the posterior segment.

            Conventional ophthalmic ultrasonography is performed using 10-megahertz (MHz) transducers. Our aim was to explore the use of higher frequency ultrasound to provide improved resolution of the posterior pole. Prospective case series. One normal subject and 5 subjects with pathologies affecting the posterior coats, including nevii, small melanomas, and macular hole. We modeled the frequency-dependent attenuation of ultrasound across the eye to develop an understanding of the range of frequencies that might be practically applied for imaging of the posterior pole. We compared images of the posterior coats made at 10, 15, and 20 MHz, and 20-MHz ultrasound images of pathologies with 10-MHz ultrasound and optical coherence tomography (OCT). Ability to resolve normal and pathologic structures affecting posterior coats of the eye. Modeling showed that frequencies of 20 to 25 MHz might be used for posterior pole imaging. Twenty-megahertz images allowed differentiation of the retina, choroid, and sclera. In addition, at 20 MHz the retina showed banding patterns suggesting an internal structure comparable in many respects to that seen in OCT and histology. Images of ocular pathology provided much improved detail relative to 10-MHz images and deeper penetration than OCT. Twenty-megahertz ultrasound can be practically employed for imaging of the posterior pole of the eye, providing a 2-fold improvement in resolution relative to conventional 10-MHz instruments. Although not providing the resolution of OCT, ultrasound can be used in the presence of optical opacities and allows evaluation of deeper tissue structures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ultrasound Axicon: a device for focusing over a large depth

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                August 2014
                05 August 2014
                : 14
                : 8
                : 14278-14288
                Affiliations
                Department of Medical Biotechnology, Dongguk University, Seoul 100-715, Korea; E-Mail: jjsspace@ 123456dongguk.edu ; Tel./Fax: +82-2-2260-3309
                Article
                sensors-14-14278
                10.3390/s140814278
                4179078
                25098208
                16523a97-0cbc-4dab-affa-1900caabadb2
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 04 June 2014
                : 14 July 2014
                : 28 July 2014
                Categories
                Article

                Biomedical engineering
                high frequency ultrasound imaging,depth of field,signal-to-noise ratio,dual-element transducer,phase-inversion,multi-focal zone

                Comments

                Comment on this article