11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, a comparison of the effects of neutron and electron irradiation of aqueous DNA solutions was investigated to characterize potential neutron signatures in DNA damage induction. Ionizing radiation generates numerous lesions in DNA, including base and sugar lesions, lesions involving base–sugar combinations (e.g. 8,5′-cyclopurine-2′-deoxynucleosides) and DNA–protein cross-links, as well as single- and double-strand breaks and clustered damage. The characteristics of damage depend on the linear energy transfer (LET) of the incident radiation. Here we investigated DNA damage using aqueous DNA solutions in 10 mmol/l phosphate buffer from 0–80 Gy by low-LET electrons (10 Gy/min) and the specific high-LET (∼0.16 Gy/h) neutrons formed by spontaneous 252Cf decay fissions. 8-hydroxy-2′-deoxyguanosine (8-OH-dG), (5′ R)-8,5′-cyclo-2′-deoxyadenosine ( R-cdA) and (5′ S)-8,5′-cyclo-2′-deoxyadenosine ( S-cdA) were quantified using liquid chromatography–isotope-dilution tandem mass spectrometry to demonstrate a linear dose dependence for induction of 8-OH-dG by both types of radiation, although neutron irradiation was ∼50% less effective at a given dose compared with electron irradiation. Electron irradiation resulted in an exponential increase in S-cdA and R-cdA with dose, whereas neutron irradiation induced substantially less damage and the amount of damage increased only gradually with dose. Addition of 30 mmol/l 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), a free radical scavenger, to the DNA solution before irradiation reduced lesion induction to background levels for both types of radiation. These results provide insight into the mechanisms of DNA damage by high-LET 252Cf decay neutrons and low-LET electrons, leading to enhanced understanding of the potential biological effects of these types of irradiation.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative DNA damage and disease: induction, repair and significance.

          The generation of reactive oxygen species may be both beneficial to cells, performing a function in inter- and intracellular signalling, and detrimental, modifying cellular biomolecules, accumulation of which has been associated with numerous diseases. Of the molecules subject to oxidative modification, DNA has received the greatest attention, with biomarkers of exposure and effect closest to validation. Despite nearly a quarter of a century of study, and a large number of base- and sugar-derived DNA lesions having been identified, the majority of studies have focussed upon the guanine modification, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OH-dG). For the most part, the biological significance of other lesions has not, as yet, been investigated. In contrast, the description and characterisation of enzyme systems responsible for repairing oxidative DNA base damage is growing rapidly, being the subject of intense study. However, there remain notable gaps in our knowledge of which repair proteins remove which lesions, plus, as more lesions identified, new processes/substrates need to be determined. There are many reports describing elevated levels of oxidatively modified DNA lesions, in various biological matrices, in a plethora of diseases; however, for the majority of these the association could merely be coincidental, and more detailed studies are required. Nevertheless, even based simply upon reports of studies investigating the potential role of 8-OH-dG in disease, the weight of evidence strongly suggests a link between such damage and the pathogenesis of disease. However, exact roles remain to be elucidated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of free radical-induced damage to DNA.

            Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Initial events in the cellular effects of ionizing radiations: clustered damage in DNA.

              General correlations are found between the detailed spatial and temporal nature of the initial physical features of radiation insult and the likelihood of final biological consequences. These persist despite the chain of physical, chemical and biological processes that eliminate the vast majority of the early damage. Details of the initial conditions should provide guidance to critical features of the most relevant early biological damage and subsequent repair. Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. It has been hypothesized that there is reduced repair of the more severe examples and that the spectrum of lesions that dominate the final cellular consequences is heavily skewed towards the more severe, clustered components.
                Bookmark

                Author and article information

                Journal
                J Radiat Res
                J. Radiat. Res
                jrr
                jrr
                Journal of Radiation Research
                Oxford University Press
                0449-3060
                1349-9157
                November 2014
                17 July 2014
                17 July 2014
                : 55
                : 6
                : 1081-1088
                Affiliations
                [1 ]Department of Radiation Medicine, Georgetown University Hospital , 3800 Reservoir Road, LL Bles, Washington, DC 20007, USA
                [2 ]Radiation Physics Division, National Institute of Standards and Technology , Gaithersburg, MD 20899, USA
                [3 ]Scientific Research Department, Armed Forces Radiobiological Research Institute , Uniformed Services University of the Health Sciences , Bethesda, MD 20889, USA
                [4 ]Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, MD 20899, USA
                Author notes
                [* ]Corresponding author: Department of Radiation Medicine, Georgetown University Hospital, 3800 Reservoir Road, LL Bles, Washington, DC 20007, USA. Tel: +1-202-444-4069; Fax: +1-202-444-3786; Email: pangd@ 123456georgetown.edu
                Article
                rru059
                10.1093/jrr/rru059
                4229924
                25034731
                165965a4-8edd-40a0-99bf-a4631ef97bba
                © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 December 2013
                : 20 May 2014
                : 8 June 2014
                Categories
                Biology

                Oncology & Radiotherapy
                electron linac irradiation,252cf decay fission neutrons,8-hydroxy-2′-deoxyguanosine,(5′r)-8,5′-cyclo-2′-deoxyadenosine,and (5′s)-8,5′-cyclo-2′-deoxyadenosine,liquid chromatography–isotope-dilution tandem mass spectrometry,relative biological effectiveness

                Comments

                Comment on this article