5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hydrogen sulfide attenuates renal I/R-induced activation of the inflammatory response and apoptosis via regulating Nrf2-mediated NLRP3 signaling pathway inhibition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Renal ischemia/reperfusion (I/R) injury can lead to acute renal failure, delayed graft function and graft rejection. Nucleotide-binding oligomerization domain NOD-like receptor containing pyrin domain 3 (NLRP3)-mediated inflammation participates in the development of renal injury. Nrf2 accelerates NLRP3 signaling pathway activation and further regulates the inflammatory response. In addition, hydrogen sulfide serves a protective role in renal injury; however, the detailed underlying mechanism remains poorly understood. The present study investigated whether Nrf2 and NLRP3 pathway participate in hydrogen sulfide-regulated renal I/R-induced activation of the inflammatory response and apoptosis. Wild-type and Nrf2-knockout (KO) mice underwent surgery to induce renal I/R via clamping of the bilateral renal pedicles. A total of 20 mg/kg MCC950 (an NLRP3 inhibitor) was injected intraperitoneally daily for 14 days prior to surgery. Renal tissue and blood were collected from the I/R model mice to analyze NLRP3 and Nrf2 mRNA expression levels, NLRP3, PYD and CARD domain containing, caspase-1, IL-1β, Nrf2 and heme oxygenase 1 protein expression levels, cell apoptosis, the secretion of tumor necrosis factor-α, IL-1β and IL-6 cytokines and renal histopathology and function. Renal I/R activated the NLRP3 and Nrf2 signaling pathways. Conversely, MCC950 treatment inhibited activation of the NLRP3 signaling pathway, and prevented I/R-induced renal injury, release of cytokines and apoptosis in renal I/R model mice. Sodium hydrosulfide (NaHS) not only alleviated upregulation of NLRP3 protein expression levels, but also relieved renal injury, release of cytokines and cell apoptosis induced by renal I/R in wild-type mice, but not in Nrf2-KO mice. NaHS alleviated NLRP3 inflammasome activation, renal injury, the inflammatory response and cell apoptosis via the Nrf2 signaling pathway in renal I/R model mice.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The inflammasomes.

            Inflammasomes are molecular platforms activated upon cellular infection or stress that trigger the maturation of proinflammatory cytokines such as interleukin-1beta to engage innate immune defenses. Strong associations between dysregulated inflammasome activity and human heritable and acquired inflammatory diseases highlight the importance this pathway in tailoring immune responses. Here, we comprehensively review mechanisms directing normal inflammasome function and its dysregulation in disease. Agonists and activation mechanisms of the NLRP1, NLRP3, IPAF, and AIM2 inflammasomes are discussed. Regulatory mechanisms that potentiate or limit inflammasome activation are examined, as well as emerging links between the inflammasome and pyroptosis and autophagy. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome.

              Dying cells are capable of activating the innate immune system and inducing a sterile inflammatory response. Here, we show that necrotic cells are sensed by the Nlrp3 inflammasome resulting in the subsequent release of the proinflammatory cytokine IL-1beta. Necrotic cells produced by pressure disruption, hypoxic injury, or complement-mediated damage were capable of activating the Nlrp3 inflammasome. Nlrp3 inflammasome activation was triggered in part through ATP produced by mitochondria released from damaged cells. Neutrophilic influx into the peritoneum in response to necrotic cells in vivo was also markedly diminished in the absence of Nlrp3. Nlrp3-deficiency moreover protected animals against mortality, renal dysfunction, and neutrophil influx in an in vivo renal ischemic acute tubular necrosis model. These findings suggest that the inhibition of Nlrp3 inflammasome activity can diminish the acute inflammation and damage associated with tissue injury.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2021
                17 May 2021
                17 May 2021
                : 24
                : 1
                : 518
                Affiliations
                [1 ]Department of Pediatric Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
                [2 ]Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
                [3 ]Tianjin Research Institute of Anesthesiology, Tianjin 300052, P.R. China
                [4 ]Department of Urinary Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
                Author notes
                Correspondence to: Dr Min Liu, Department of Urinary Surgery, Cangzhou Central Hospital, 16 Xinhuaxi Road, Cangzhou, Hebei 061001, P.R. China, E-mail: 1048276869@ 123456qq.com
                Dr Hongguang Chen, Department of Anesthesiology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, P.R. China, E-mail: daguang521521@ 123456163.com
                [*]

                Contributed equally

                Article
                MMR-0-0-12157
                10.3892/mmr.2021.12157
                8160482
                34013370
                165c9861-2b56-4914-a244-9c5d61cf3483
                Copyright: © Su et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 23 October 2020
                : 23 March 2021
                Categories
                Articles

                renal ischemia/reperfusion injury,nlr family pyrin domain containing 3,nrf2,hydrogen sulfide,apoptosis

                Comments

                Comment on this article