+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Vibrio harveyi, which belongs to family Vibrionaceae of class Gammaproteobacteria, includes the species V. carchariae and V. trachuri as its junior synonyms. The organism is a well-recognized and serious bacterial pathogen of marine fish and invertebrates, including penaeid shrimp, in aquaculture. Diseased fish may exhibit a range of lesions, including eye lesions/blindness, gastro-enteritis, muscle necrosis, skin ulcers, and tail rot disease. In shrimp, V. harveyi is regarded as the etiological agent of luminous vibriosis in which affected animals glow in the dark. There is a second condition of shrimp known as Bolitas negricans where the digestive tract is filled with spheres of sloughed-off tissue. It is recognized that the pathogenicity mechanisms of V. harveyi may be different in fish and penaeid shrimp. In shrimp, the pathogenicity mechanisms involved the endotoxin lipopolysaccharide, and extracellular proteases, and interaction with bacteriophages. In fish, the pathogenicity mechanisms involved extracellular hemolysin (encoded by duplicate hemolysin genes), which was identified as a phospholipase B and could inactivate fish cells by apoptosis, via the caspase activation pathway. V. harveyi may enter the so-called viable but nonculturable (VBNC) state, and resuscitation of the VBNC cells may be an important reason for vibriosis outbreaks in aquaculture. Disease control measures center on dietary supplements (including probiotics), nonspecific immunostimulants, and vaccines and to a lesser extent antibiotics and other antimicrobial compounds.

          Related collections

          Most cited references 143

          • Record: found
          • Abstract: found
          • Article: not found

          Recent findings on the viable but nonculturable state in pathogenic bacteria.

          Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this 'viable but nonculturable' (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.
            • Record: found
            • Abstract: found
            • Article: not found

            Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment.

            Plating methods for estimating survival of indicator organisms, such asEscherichia coli, and water-borne pathogens includingVibrio cholerae, have severe limitations when used to estimate viable populations of these organisms in the aquatic environment. By combining the methods of immunofluorescent microscopy, acridine orange direct counting, and direct viable counting, with culture methods such as indirect enumeration by most probable number (MPN) estimation and direct plating, it was shown that bothE. coli andV. cholerae undergo a "nonrecoverable" stage of existence, but remain viable. Following 2-week incubations in saltwater (5-25%o NaCl) microcosms, total counts, measured by direct microscopic examination of fluorescent antibody and acridine orange stained cells, remained unchanged, whereas MPN estimates and plate counts exhibited rapid decline. Results of direct viable counting, a procedure permitting estimate of substrate-responsive viable cells by microscopic examination, revealed that a significant proportion of the nonculturable cells were, indeed, viable. Thus, survival of pathogens in the aquatic environment must be re-assessed. The "die-off" or "decay" concept may not be completely valid. Furthermore, the usefulness of the coliform and fecal coliform indices for evaluating water quality for public health purposes may be seriously compromised, in the light of the finding reported here.
              • Record: found
              • Abstract: found
              • Article: not found

              Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus.

              In a process known as quorum sensing, bacteria communicate with one another by producing, releasing, detecting, and responding to signal molecules called autoinducers. Vibrio harveyi, a marine pathogen, uses two parallel quorum-sensing circuits, each consisting of an autoinducer-sensor pair, to control the expression of genes required for bioluminescence and a number of other target genes. Genetic screens designed to discover autoinducer-regulated targets in V. harveyi have revealed genes encoding components of a putative type III secretion (TTS) system. Using transcriptional reporter fusions and TTS protein localization studies, we show that the TTS system is indeed functional in V. harveyi and that expression of the genes encoding the secretion machinery requires an intact quorum-sensing signal transduction cascade. The newly completed genome of the closely related marine bacterium Vibrio parahaemolyticus, which is a human pathogen, shows that it possesses the genes encoding both of the V. harveyi-like quorum-sensing signaling circuits and that it also has a TTS system similar to that of V. harveyi. We show that quorum sensing regulates TTS in V. parahaemolyticus. Previous reports connecting quorum sensing to TTS in enterohemorrhagic and enteropathogenic Escherichia coli show that quorum sensing activates TTS at high cell density. Surprisingly, we find that at high cell density (in the presence of autoinducers), quorum sensing represses TTS in V. harveyi and V. parahaemolyticus.

                Author and article information

                Mar Life Sci Technol
                Mar Life Sci Technol
                Marine Life Science & Technology
                Springer Singapore (Singapore )
                3 April 2020
                3 April 2020
                : 1-15
                [1 ]GRID grid.4422.0, ISNI 0000 0001 2152 3263, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, , Ocean University of China, ; Qingdao, 266003 China
                [2 ]GRID grid.484590.4, ISNI 0000 0004 5998 3072, Laboratory for Marine Ecology and Environmental Science, , Qingdao National Laboratory for Marine Science and Technology, ; Qingdao, 266237 China
                [3 ]GRID grid.4422.0, ISNI 0000 0001 2152 3263, Frontiers Science Center for Deep Ocean Multispheres and Earth System, , Ocean University of China, ; Qingdao, 266100 China
                [4 ]GRID grid.11918.30, ISNI 0000 0001 2248 4331, Institute of Aquaculture, , University of Stirling, ; Stirling, FK9 4LA Scotland, UK
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit


                aquaculture, invertebrates, fish, pathogen, vibrio harveyi


                Comment on this article