6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Disulfide Isomerase Inhibitor Suppresses Viral Replication and Production during Antibody-Dependent Enhancement of Dengue Virus Infection in Human Monocytic Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of several mechanisms that leads to the development of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) is called antibody-dependent enhancement (ADE). Monocytes can be infected by the ADE phenomenon, which occurs in dengue secondary infection. This study aimed to investigate the proteins involved in ADE of DENV infection in the human monocytic cell line U937. The phosphoproteins were used to perform and analyze for protein expression using mass spectrometry (GeLC-MS/MS). The differential phosphoproteins revealed 1131 altered proteins compared between isotype- and DENV-specific antibody-treated monocytes. The altered proteins revealed 558 upregulated proteins and 573 downregulated proteins. Protein disulfide isomerase (PDI), which is an enzyme that had a high-ranking fold change and that catalyzes the formation, breakage, and rearrangement of disulfide bonds within a protein molecule, was selected for further study. PDI was found to be important for dengue virus infectivity during the ADE model. The effect of PDI inhibition was also shown to be involved in the early stage of life cycle by time-of-drug-addition assay. These results suggest that PDI is important for protein translation and virion assembly of dengue virus during infection in human monocytes, and it may play a significant role as a chaperone to stabilize dengue protein synthesis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Dengue virus pathogenesis: an integrated view.

          Much remains to be learned about the pathogenesis of the different manifestations of dengue virus (DENV) infections in humans. They may range from subclinical infection to dengue fever, dengue hemorrhagic fever (DHF), and eventually dengue shock syndrome (DSS). As both cell tropism and tissue tropism of DENV are considered major determinants in the pathogenesis of dengue, there is a critical need for adequate tropism assays, animal models, and human autopsy data. More than 50 years of research on dengue has resulted in a host of literature, which strongly suggests that the pathogenesis of DHF and DSS involves viral virulence factors and detrimental host responses, collectively resulting in abnormal hemostasis and increased vascular permeability. Differential targeting of specific vascular beds is likely to trigger the localized vascular hyperpermeability underlying DSS. A personalized approach to the study of pathogenesis will elucidate the basis of individual risk for development of DHF and DSS as well as identify the genetic and environmental bases for differences in risk for development of severe disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization.

            Dengue viral antigens have been demonstrated in several types of naturally infected human tissues, but little is known of whether these same tissues have detectable viral RNA. We studied tissue specimens from patients with serologically or virologically confirmed dengue infections by immunohistochemistry (IHC) and in situ hybridization (ISH), to localize viral antigen and RNA, respectively. IHC was performed on specimens obtained from 5 autopsies and 24 biopsies and on 20 blood-clot samples. For ISH, antisense riboprobes to the dengue E gene were applied to tissue specimens in which IHC was positive. Viral antigens were demonstrated in Kupffer and sinusoidal endothelial cells of the liver; macrophages, multinucleated cells, and reactive lymphoid cells in the spleen; macrophages and vascular endothelium in the lung; kidney tubules; and monocytes and lymphocytes in blood-clot samples. Positive-strand viral RNA was detected in the same IHC-positive cells found in the spleen and blood-clot samples. The strong, positive ISH signal in these cells indicated a high copy number of viral RNA, suggesting replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention.

              Infection with dengue virus (DENV) or any other flavivirus induces cross-reactive, but weakly neutralizing or nonneutralizing, antibodies that recognize epitopes involving the fusion peptide in the envelope glycoprotein. Humanized mAb IgG 1A5, derived from a chimpanzee, shares properties of cross-reactive antibodies. mAb IgG 1A5 up-regulated DENV infection by a mechanism of antibody-dependent enhancement (ADE) in a variety of Fc receptor-bearing cells in vitro. A 10- to 1,000-fold increase of viral yield in K562 cells, dependent on the DENV serotype, was observed over a range of subneutralizing concentrations of IgG 1A5. A significant increase of DENV-4 viremia titers (up to 100-fold) was also demonstrated in juvenile rhesus monkeys immunized with passively transferred dilutions of IgG 1A5. These results, together with earlier findings of ADE of DENV-2 infection by a polyclonal serum, establish the primate model for analysis of ADE. Considering the abundance of these cross-reactive antibodies, our observations confirm that significant viral amplification could occur during DENV infections in humans with prior infection or with maternally transferred immunity, possibly leading to severe dengue. Strategies to eliminate ADE were explored by altering the antibody Fc structures responsible for binding to Fc receptors. IgG 1A5 variants, containing amino acid substitutions from the Fc region of IgG2 or IgG4 antibodies, reduced but did not eliminate DENV-4-enhancing activity in K562 cells. Importantly, a 9-aa deletion at the N terminus of the CH(2) domain in the Fc region abrogated the enhancing activity.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                13 February 2019
                February 2019
                : 11
                : 2
                : 155
                Affiliations
                [1 ]Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; n_1103@ 123456hotmail.com
                [2 ]Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
                [3 ]Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; onrapak.rea@ 123456mahidol.ac.th
                [4 ]Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; kboonnak@ 123456gmail.com
                Author notes
                [* ]Correspondence: suttitheptumrong@ 123456yahoo.com (A.S.); sanga.pat@ 123456mahidol.ac.th (S.-n.P.); Tel.: +66-2-419-2755 (A.S. & S.-n.P.); Fax: +66-2-411-0169 (A.S. & S.-n.P.)
                Author information
                https://orcid.org/0000-0001-9335-8703
                Article
                viruses-11-00155
                10.3390/v11020155
                6410196
                30781856
                166b4137-7f16-466e-a749-ca8091dfb2e0
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2018
                : 12 February 2019
                Categories
                Article

                Microbiology & Virology
                protein disulfide isomerase inhibitor,viral replication and production,antibody-dependent enhancement,dengue virus infection,human monocytic cells

                Comments

                Comment on this article