8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway

        1 , 2 , 3 , 4
      New Phytologist
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants

          Plants and animals are obligate aerobes, requiring oxygen for mitochondrial respiration and energy production. In plants, an unanticipated decline in oxygen availability (hypoxia), as caused by root waterlogging or foliage submergence, triggers changes in gene transcription and mRNA translation that promote anaerobic metabolism and thus sustain substrate-level ATP production 1 . In contrast to animals 2 , oxygen sensing has not been ascribed to a mechanism of gene regulation in response to oxygen deprivation in plants. Here we show that the N-end rule pathway of targeted proteolysis acts as a homeostatic sensor of severe low oxygen in Arabidopsis, through its regulation of key hypoxia response transcription factors. We found that plants lacking components of the N-end rule pathway constitutively express core hypoxia response genes and are more tolerant of hypoxic stress. We identify the hypoxia-associated Ethylene Response Factor (ERF) Group VII transcription factors of Arabidopsis as substrates of this pathway. Regulation of these proteins by the N-end rule pathway occurs through a characteristic conserved motif at the N-terminus initiating with MetCys- (MC-). Enhanced stability of one of these proteins, HRE2, under low oxygen conditions improves hypoxia survival and reveals a molecular mechanism for oxygen sensing in plants via the evolutionarily conserved N-end rule pathway. SUB1A-1, a major determinant of submergence tolerance in rice 3 , was shown not to be a substrate for the N-end rule pathway despite containing the N-terminal motif, suggesting that it is uncoupled from N-end rule pathway regulation, and that enhanced stability may relate to the superior tolerance of Sub1 rice varieties to multiple abiotic stresses 4 .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The N-end rule pathway and regulation by proteolysis.

            The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(α) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac)N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N-terminal acetylation of cellular proteins creates specific degradation signals.

              The retained N-terminal methionine (Met) residue of a nascent protein is often N-terminally acetylated (Nt-acetylated). Removal of N-terminal Met by Met-aminopeptidases frequently leads to Nt-acetylation of the resulting N-terminal alanine (Ala), valine (Val), serine (Ser), threonine (Thr), and cysteine (Cys) residues. Although a majority of eukaryotic proteins (for example, more than 80% of human proteins) are cotranslationally Nt-acetylated, the function of this extensively studied modification is largely unknown. Using the yeast Saccharomyces cerevisiae, we found that the Nt-acetylated Met residue could act as a degradation signal (degron), targeted by the Doa10 ubiquitin ligase. Moreover, Doa10 also recognized the Nt-acetylated Ala, Val, Ser, Thr, and Cys residues. Several examined proteins of diverse functions contained these N-terminal degrons, termed AcN-degrons, which are a prevalent class of degradation signals in cellular proteins.
                Bookmark

                Author and article information

                Journal
                New Phytologist
                New Phytol
                Wiley
                0028646X
                May 2018
                May 2018
                June 05 2017
                : 218
                : 3
                : 929-935
                Affiliations
                [1 ]Independent Junior Research Group on Protein Recognition and Degradation; Leibniz Institute of Plant Biochemistry (IPB); Weinberg 3 Halle (Saale) D-06120 Germany
                [2 ]ScienceCampus Halle - Plant-based Bioeconomy; Betty-Heimann-Strasse 3 Halle (Saale) D-06120 Germany
                [3 ]LIPM; Université de Toulouse; INRA; CNRS; Castanet-Tolosan 31 326 France
                [4 ]Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
                Article
                10.1111/nph.14619
                28581033
                167556b7-798f-41c9-bf5d-26d9779400de
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article