9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interference Minimization in 5G Heterogeneous Networks

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we focus on one of the representative 5G network scenarios, namely multi-tier heterogeneous cellular networks. User association is investigated in order to reduce the down-link co-channel interference. Firstly, in order to analyze the multi-tier heterogeneous cellular networks where the base stations in different tiers usually adopt different transmission powers, we propose a Transmission Power Normalization Model (TPNM), which is able to convert a multi-tier cellular network into a single-tier network, such that all base stations have the same normalized transmission power. Then using TPNM, the signal and interference received at any point in the complex multi-tier environment can be analyzed by considering the same point in the equivalent single-tier cellular network model, thus significantly simplifying the analysis. On this basis, we propose a new user association scheme in heterogeneous cellular networks, where the base station that leads to the smallest interference to other co-channel mobile stations is chosen from a set of candidate base stations that satisfy the quality-of-service (QoS) constraint for an intended mobile station. Numerical results show that the proposed user association scheme is able to significantly reduce the down-link interference compared with existing schemes while maintaining a reasonably good QoS.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Femtocell Networks: A Survey

          , , (2008)
          The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hotspots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells, also called home base-stations, which are data access points installed by home users get better indoor voice and data coverage. In this article, we overview the technical and business arguments for femtocells, and describe the state-of-the-art on each front. We also describe the technical challenges facing femtocell networks, and give some preliminary ideas for how to overcome them.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive Downlink SINR Analysis

            In this paper we develop a tractable framework for SINR analysis in downlink heterogeneous cellular networks (HCNs) with flexible cell association policies. The HCN is modeled as a multi-tier cellular network where each tier's base stations (BSs) are randomly located and have a particular transmit power, path loss exponent, spatial density, and bias towards admitting mobile users. For example, as compared to macrocells, picocells would usually have lower transmit power, higher path loss exponent (lower antennas), higher spatial density (many picocells per macrocell), and a positive bias so that macrocell users are actively encouraged to use the more lightly loaded picocells. In the present paper we implicitly assume all base stations have full queues; future work should relax this. For this model, we derive the outage probability of a typical user in the whole network or a certain tier, which is equivalently the downlink SINR cumulative distribution function. The results are accurate for all SINRs, and their expressions admit quite simple closed-forms in some plausible special cases. We also derive the \emph{average ergodic rate} of the typical user, and the \emph{minimum average user throughput} -- the smallest value among the average user throughputs supported by one cell in each tier. We observe that neither the number of BSs or tiers changes the outage probability or average ergodic rate in an interference-limited full-loaded HCN with unbiased cell association (no biasing), and observe how biasing alters the various metrics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stochastic Geometry for Modeling, Analysis, and Design of Multi-Tier and Cognitive Cellular Wireless Networks: A Survey

                Bookmark

                Author and article information

                Journal
                2017-01-01
                Article
                10.1007/s11036-014-0564-1
                1701.00202
                16845977-5cce-46d3-852e-5bd39b06a7e8

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Mobile Networks and Applications, vol. 20, no. 6, pp. 756-762, 2015
                7 pages, 3 figures
                cs.IT cs.NI math.IT

                Numerical methods,Information systems & theory,Networking & Internet architecture

                Comments

                Comment on this article